Maja Ravnikar
University of Ljubljana
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maja Ravnikar.
Journal of Clinical Microbiology | 2008
Ion Gutiérrez-Aguirre; Andrej Steyer; Jana Boben; Kristina Gruden; Mateja Poljšak-Prijatelj; Maja Ravnikar
ABSTRACT Rotaviruses are one of the major causes of diarrhea in infants and children under 5 years old, especially affecting developing countries. In natural disasters, fecal matter and potable waters can mix, allowing low, yet infective, concentrations of rotavirus to be present in water supplies, constituting a risk for the population. Any of the most commonly detected rotavirus genotypes could originate an outbreak. The development of a fast and sensitive method that could detect the broadest possible range of rotavirus genotypes would help with efficient diagnosis and prevention. We have designed a reverse transcription (RT)-real-time quantitative PCR approach targeted to the rotaviral VP2 gene, based on a multiple-sequence alignment of different human rotaviral strains. To overcome the high nucleotide sequence diversity, multiple forward and reverse primers were used, in addition to a degenerate probe. The performance of the assay was tested on isolates representing the most prevalent human genotypes: G1P[8], G2P[4], G3P[8], G4P[8], G9P[8], and G12P[8]. The developed method improved classical rotavirus detection by enzyme-linked immunosorbent assay and nested RT-PCR by 5 and at least 1 order of magnitude, respectively. A survey of 159 stool samples indicated that the method can efficiently detect a broad range of rotavirus strains, including different G-P genotype combinations of human, porcine, and bovine origin. No cross-reactivity was observed with other enteric viruses, such as astrovirus, sapovirus, and norovirus.
Journal of Virological Methods | 2008
Polona Kogovšek; L. Gow; Maruša Pompe-Novak; Kristina Gruden; Gary D. Foster; N. Boonham; Maja Ravnikar
Potato virus Y (PVY) has a worldwide distribution and infects several economically important crops from the Solanaceae family. The emergence and spread of the PVYNTN strain, which is the causative agent of potato tuber necrotic ringspot disease (PTNRD), has lead to large economic losses and highlighted the need for accurate discrimination of the different PVY strains. Detection and differentiation of PVY isolates is mainly based on a combination of ELISA, RT-PCR and bioassays; however, PVYNTN isolates are particularly difficult to differentiate from standard PVYN without the use of time-consuming bioassays. A strong correlation has been identified previously between the ability to induce PTNRD and the presence of a recombination point in the virus coat protein. An RT real-time PCR assay has been developed to enable detection of isolates with the recombination point, therefore, enabling rapid differentiation between potentially tuber necrotic PVYNTN isolates and standard PVYN isolates. The assay is also able to detect the presence of PVYO isolates. To aid with routine testing, immuno-capture and post-ELISA virus release were introduced; when coupled with RT real-time PCR the sensitivity of the assays were up to seven orders of magnitude higher than ELISA. The assay was shown to be a suitable method for rapid large-scale diagnostic testing of PVY in different types of plant material including tubers, and specific screening for potentially tuber necrotic recombinant isolates.
Journal of Plant Growth Regulation | 1992
Maja Ravnikar; Barbara Vilhar; Nada Gogala
The effect of jasmonic acid (JA), in a wide range of concentrations (0.01–100 μM), on the development of potato plantlets (Solanum tuberosum L.cv. Vesna) was investigated in order to discriminate between physiological and supraoptimal effects of this growth regulator in vitro. Concentrations from 0.1–1 μM significantly increased the length of developed plants. Application of JA in these concentrations resulted in a very well differentiated root system with many lateral branches. With increasing JA concentrations, the main roots shortened and thickened. Concentrations higher than 10 μM led to the compaction of the stem, roots, and root hairs, giving a stunted appearance to the plants. The effect of JA on cell wall regeneration and callus formation was observed in potato leaf protoplast culture. JA at concentrations from 0.01–1 μM stimulated cell division and microcalli development.
Biochimica et Biophysica Acta | 2002
Eva Žerovnik; Maruša Pompe-Novak; Miha Škarabot; Maja Ravnikar; Igor Muševič; Vito Turk
Human stefin B (cystatin B) is an intracellular cysteine proteinase inhibitor broadly distributed in different tissues. Here, we show that recombinant human stefin B readily forms amyloid fibrils in vitro. It dimerises and further oligomerises, starting from the native-like acid intermediate, I(N), populated at pH 5. On standing at room temperature it produces regular (over 4 microm long) fibrils over a period of several months. These have been visualised by transmission electron microscopy and atomic force microscopy. Their cross-sectional diameter is about 14 nm and blocks of 27 nm repeat longitudinally. The fibrils are smooth, of unbranched surface, consistent with findings of other amyloid fibrils. Thioflavin T fluorescence spectra as a function of time were recorded and Congo red dye binding to the fibrils was demonstrated. Adding 10% (v/v) trifluoroethanol resulted in an increased rate of fibrillation with a typical lag phase. The finding that human stefin B, in contrast to the homologue stefin A, forms amyloid fibrils rather easily should promote further studies of the proteins behaviour in vivo, and/or as a model system for fibrillogenesis.
Journal of Plant Growth Regulation | 1993
Maja Ravnikar; Jana Žel; Igor Plaper; Alenka Špacapan
Although much information is available concerning the involvement of jasmonates in the regulation of plant development, few reports are devoted to their effects in tissue culture. In the present study, the influence of jasmonic acid (JA) on shoot and bulb formation in tissue culture of garlic (Allium sativum cv. Ptuj) was studied. Isolated basal plates were placed onto Gamborgs B5 medium. JA significantly enhanced the shoot and bulb development in concentrations from 1–10 μM. When the combination of 10 μM JA and 5 μM 2-iP was used in the initiation media, the average number of shoots was 30 after 6 weeks of culture. The bulbs formed on approximately 50% of shoots. Results described in this article show that JA might play an important role in the formation of storage organs in plants, in this case on garlic bulbs.
Plant Molecular Biology | 1997
Kristina Gruden; Borut Štrukelj; Maja Ravnikar; Mateja Poljšak-Prijatelj; Irena Mavrič; Jože Brzin; Jože Pungerčar; Igor Kregar
Potato cysteine proteinase inhibitors (PCPIs) represent a distinct group of proteins as they show no homology to any other known cysteine proteinase inhibitor superfamilies, but they all belong to the Kunitz-type soybean trypsin inhibitor family. cDNA clones for five PCPIs have been isolated and sequenced. Amino acid substitutions occurring in the limited regions forming loops on the surface of these proteins suggest a further classification of PCPIs into three subgroups. Accumulation of PCPI was observed in vacuoles of stems after treatment with jasmonic acid (JA) using immunocytochemical localisation, implying that these inhibitors are part of a potato defence mechanism against insects and pathogens. Genomic DNA analysis show that PCPIs form a multigene family and suggest that their genes do not possess any introns.
Molecular Plant Pathology | 2009
Špela Baebler; Hana Krečič-Stres; Ana Rotter; Polona Kogovšek; Katarina Cankar; Esther J. Kok; Kristina Gruden; Maja Kovač; Jana Zel; Maruša Pompe-Novak; Maja Ravnikar
Host gene expression changes in the early response to potato virus Y(NTN) interaction were compared in two differently sensitive potato cultivars: the resistant cultivar Santé and the sensitive cultivar Igor. Hybridization of potato TIGR cDNA microarrays allowed us to monitor the expression of approximately 10,000 genes simultaneously at 0.5 and 12 h post-inoculation (hpi). Microarray data, analysed by statistics and data mining, were complemented by subtraction library construction and sequence analysis to validate the findings. The expression profiles of the two cultivars were similar and faint at 0.5 hpi, but they differed substantially at 12 hpi. Although, at 0.5 hpi, cv. Santé responded by the differential expression of a greater number of genes, at 12 hpi the number was higher in cv. Igor. The majority of genes in this cultivar were down-regulated at 12 hpi, indicating a host gene shut-off. Suites of genes that exhibited altered transcript abundance in response to the virus were identified, and included genes involved in the processes of photosynthesis, perception, signalling and defence responses. The expression of the considerable number of genes associated with photosynthesis was surprisingly up-regulated as early as 0.5 hpi and down-regulated at 12 hpi in both cultivars. The expression of genes involved in perception and signalling was increased in the sensitive cultivar at 12 hpi. By contrast, a simultaneous strong defence response at the transcriptional level was evident in the resistant cultivar, as shown by the up-regulation of genes involved in brassinosteroid, polyamine and secondary metabolite biosynthesis, and of genes coding for pathogenesis-related proteins.
Analytical and Bioanalytical Chemistry | 2014
Nejc Rački; Dany Morisset; Ion Gutiérrez-Aguirre; Maja Ravnikar
Water contamination by viruses has an increasing worldwide impact on human health, and has led to requirements for accurate and quantitative molecular tools. Here, we report the first one-step reverse-transcription droplet digital PCR-based absolute quantification of a RNA virus (rotavirus) in different types of surface water samples. This quantification method proved to be more precise and more tolerant to inhibitory substances than the benchmarking reverse-transcription real-time PCR (RT-qPCR), and needs no standard curve. This new tool is fully amenable for the quantification of viruses in the particularly low concentrations usually found in water samples.
Plant Methods | 2014
Nejc Rački; Tanja Dreo; Ion Gutiérrez-Aguirre; Andrej Blejec; Maja Ravnikar
BackgroundDetection and quantification of plant pathogens in the presence of inhibitory substances can be a challenge especially with plant and environmental samples. Real-time quantitative PCR has enabled high-throughput detection and quantification of pathogens; however, its quantitative use is linked to standardized reference materials, and its sensitivity to inhibitors can lead to lower quantification accuracy. Droplet digital PCR has been proposed as a method to overcome these drawbacks. Its absolute quantification does not rely on standards and its tolerance to inhibitors has been demonstrated mostly in clinical samples. Such features would be of great use in agricultural and environmental fields, therefore our study compared the performance of droplet digital PCR method when challenged with inhibitors common to plant and environmental samples and compared it with quantitative PCR.ResultsTransfer of an existing Pepper mild mottle virus assay from reverse transcription real-time quantitative PCR to reverse transcription droplet digital PCR was straight forward. When challenged with complex matrices (seeds, plants, soil, wastewater) and selected purified inhibitors droplet digital PCR showed higher resilience to inhibition for the quantification of an RNA virus (Pepper mild mottle virus), compared to reverse transcription real-time quantitative PCR.ConclusionsThis study confirms the improved detection and quantification of the PMMoV RT-ddPCR in the presence of inhibitors that are commonly found in samples of seeds, plant material, soil, and wastewater. Together with absolute quantification, independent of standard reference materials, this makes droplet digital PCR a valuable tool for detection and quantification of pathogens in inhibition prone samples.
Ultrasonics Sonochemistry | 2016
Matevž Dular; Tjaša Griessler-Bulc; Ion Gutiérrez-Aguirre; Ester Heath; Tina Kosjek; Aleksandra Krivograd Klemenčič; Martina Oder; Martin Petkovšek; Nejc Rački; Maja Ravnikar; Andrej Šarc; Brane Širok; Mojca Zupanc; Miha Žitnik; Boris Kompare
The use of acoustic cavitation for water and wastewater treatment (cleaning) is a well known procedure. Yet, the use of hydrodynamic cavitation as a sole technique or in combination with other techniques such as ultrasound has only recently been suggested and employed. In the first part of this paper a general overview of techniques that employ hydrodynamic cavitation for cleaning of water and wastewater is presented. In the second part of the paper the focus is on our own most recent work using hydrodynamic cavitation for removal of pharmaceuticals (clofibric acid, ibuprofen, ketoprofen, naproxen, diclofenac, carbamazepine), toxic cyanobacteria (Microcystis aeruginosa), green microalgae (Chlorella vulgaris), bacteria (Legionella pneumophila) and viruses (Rotavirus) from water and wastewater. As will be shown, hydrodynamic cavitation, like acoustic, can manifest itself in many different forms each having its own distinctive properties and mechanisms. This was until now neglected, which eventually led to poor performance of the technique. We will show that a different type of hydrodynamic cavitation (different removal mechanism) is required for successful removal of different pollutants. The path to use hydrodynamic cavitation as a routine water cleaning method is still long, but recent results have already shown great potential for optimisation, which could lead to a low energy tool for water and wastewater cleaning.