Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maja S. Engelstoft is active.

Publication


Featured researches published by Maja S. Engelstoft.


Endocrinology | 2013

GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes.

Mark K. Nøhr; Maria H. Pedersen; Andreas Gille; Kristoffer L. Egerod; Maja S. Engelstoft; Anna Sofie Husted; Rasmus Sichlau; Kaare V. Grunddal; Steen Seier Poulsen; Sangdon Han; Robert M. Jones; Stefan Offermanns; Thue W. Schwartz

The expression of short-chain fatty acid receptors GPR41/FFAR3 and GPR43/ free fatty acid receptor 2 (FFAR2) was studied in the gastrointestinal tract of transgenic monomeric red fluorescent protein (mRFP) reporter mice. In the stomach free fatty acid receptor 3 (FFAR3)-mRFP was expressed in a subpopulation of ghrelin and gastrin cells. In contrast, strong expression of FFAR3-mRFP was observed in all cholecystokinin, glucose-dependent insulinotropic peptide (GIP), and secretin cells of the proximal small intestine and in all glucagon-like peptide-1 (GLP-1), peptide YY, and neurotensin cells of the distal small intestine. Throughout the colon and rectum, FFAR3-mRFP was strongly expressed in the large population of peptide YY and GLP-1 cells and in the neurotensin cells of the proximal colon. A gradient of expression of FFAR3-mRFP was observed in the somatostatin cells from less than 5% in the stomach to more than 95% in the rectum. Substance P-containing enterochromaffin cells displayed a similar gradient of FFAR3-mRFP expression throughout the small intestine. Surprisingly, FFAR3-mRFP was also expressed in the neuronal cells of the submucosal and myenteric ganglia. Quantitative PCR analysis of fluorescence-activated cell sorting (FACS) purified FFAR3-mRFP positive cells confirmed the coexpression with the various peptide hormones as well as key neuronal marker proteins. The FFAR2-mRFP reporter was strongly expressed in a large population of leukocytes in the lamina propria of in particular the small intestine but surprisingly only weakly in a subpopulation of enteroendocrine cells. Nevertheless, synthetic ligands specific for either FFAR3 or FFAR2 each released GLP-1 from colonic crypt cultures and the FFAR2 agonist mobilized intracellular Ca²⁺ in FFAR2 positive enteroendocrine cells. It is concluded that FFAR3-mRFP serves as a useful marker for the majority of enteroendocrine cells of the small and large intestine and that FFAR3 and FFAR2 both act as sensors for short-chain fatty acids in enteroendocrine cells, whereas FFAR3 apparently has this role alone in enteric neurons and FFAR2 in enteric leukocytes.


Endocrinology | 2012

A Major Lineage of Enteroendocrine Cells Coexpress CCK, Secretin, GIP, GLP-1, PYY, and Neurotensin but Not Somatostatin

Kristoffer L. Egerod; Maja S. Engelstoft; Kaare V. Grunddal; Mark K. Nøhr; Anna Secher; Ichiro Sakata; Jens Pedersen; Johanne Agerlin Windeløv; Ernst-Martin Füchtbauer; Jørgen Olsen; F. Sundler; Jan Pravsgaard Christensen; Nils Wierup; J. Olsen; Jens J. Holst; Jeffrey M. Zigman; Steen Seier Poulsen; Thue W. Schwartz

Enteroendocrine cells such as duodenal cholecystokinin (CCK cells) are generally thought to be confined to certain segments of the gastrointestinal (GI) tract and to store and release peptides derived from only a single peptide precursor. In the current study, however, transgenic mice expressing enhanced green fluorescent protein (eGFP) under the control of the CCK promoter demonstrated a distribution pattern of CCK-eGFP positive cells that extended throughout the intestine. Quantitative PCR and liquid chromatography-mass spectrometry proteomic analyses of isolated, FACS-purified CCK-eGFP-positive cells demonstrated expression of not only CCK but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP), peptide YY (PYY), neurotensin, and secretin, but not somatostatin. Immunohistochemistry confirmed this expression pattern. The broad coexpression phenomenon was observed both in crypts and villi as demonstrated by immunohistochemistry and FACS analysis of separated cell populations. Single-cell quantitative PCR indicated that approximately half of the duodenal CCK-eGFP cells express one peptide precursor in addition to CCK, whereas an additional smaller fraction expresses two peptide precursors in addition to CCK. The coexpression pattern was further confirmed through a cell ablation study based on expression of the human diphtheria toxin receptor under the control of the proglucagon promoter, in which activation of the receptor resulted in a marked reduction not only in GLP-1 cells, but also PYY, neurotensin, GIP, CCK, and secretin cells, whereas somatostatin cells were spared. Key elements of the coexpression pattern were confirmed by immunohistochemical double staining in human small intestine. It is concluded that a lineage of mature enteroendocrine cells have the ability to coexpress members of a group of functionally related peptides: CCK, secretin, GIP, GLP-1, PYY, and neurotensin, suggesting a potential therapeutic target for the treatment and prevention of diabetes and obesity.


Molecular metabolism | 2013

Seven transmembrane G protein-coupled receptor repertoire of gastric ghrelin cells

Maja S. Engelstoft; Won-mee Park; Ichiro Sakata; Line Vildbrad Kristensen; Anna Sofie Husted; Sherri Osborne-Lawrence; Paul K Piper; Angela K. Walker; Maria H. Pedersen; Mark K. Nøhr; Jie Pan; Christopher Joseph Sinz; Paul E. Carrington; Taro E. Akiyama; Robert M. Jones; Cong Tang; Kashan Ahmed; Stefan Offermanns; Kristoffer L. Egerod; Jeffrey M. Zigman; Thue W. Schwartz

The molecular mechanisms regulating secretion of the orexigenic-glucoregulatory hormone ghrelin remain unclear. Based on qPCR analysis of FACS-purified gastric ghrelin cells, highly expressed and enriched 7TM receptors were comprehensively identified and functionally characterized using in vitro, ex vivo and in vivo methods. Five Gαs-coupled receptors efficiently stimulated ghrelin secretion: as expected the β1-adrenergic, the GIP and the secretin receptors but surprisingly also the composite receptor for the sensory neuropeptide CGRP and the melanocortin 4 receptor. A number of Gαi/o-coupled receptors inhibited ghrelin secretion including somatostatin receptors SSTR1, SSTR2 and SSTR3 and unexpectedly the highly enriched lactate receptor, GPR81. Three other metabolite receptors known to be both Gαi/o- and Gαq/11-coupled all inhibited ghrelin secretion through a pertussis toxin-sensitive Gαi/o pathway: FFAR2 (short chain fatty acid receptor; GPR43), FFAR4 (long chain fatty acid receptor; GPR120) and CasR (calcium sensing receptor). In addition to the common Gα subunits three non-common Gαi/o subunits were highly enriched in ghrelin cells: GαoA, GαoB and Gαz. Inhibition of Gαi/o signaling via ghrelin cell-selective pertussis toxin expression markedly enhanced circulating ghrelin. These 7TM receptors and associated Gα subunits constitute a major part of the molecular machinery directly mediating neuronal and endocrine stimulation versus metabolite and somatostatin inhibition of ghrelin secretion including a series of novel receptor targets not previously identified on the ghrelin cell.


Cell Metabolism | 2008

A Gut Feeling for Obesity: 7TM Sensors on Enteroendocrine Cells

Maja S. Engelstoft; Kristoffer L. Egerod; Birgitte Holst; Thue W. Schwartz

Enteroendocrine cells, which secrete peptide hormones in response to sensation of food and gut microbiota products, can now be genetically tagged, isolated, cultured, and characterized for expression of the elusive chemosensors, as shown in publications in PNAS (Samuel et al., 2008) and in this issue (Reimann et al., 2008).


Journal of Biological Chemistry | 2010

A Conserved Aromatic Lock for the Tryptophan Rotameric Switch in TM-VI of Seven-transmembrane Receptors

Birgitte Holst; Rie Nygaard; Louise Valentin-Hansen; Anders Bach; Maja S. Engelstoft; Pia Steen Petersen; Thomas M. Frimurer; Thue W. Schwartz

The conserved tryptophan in position 13 of TM-VI (Trp-VI:13 or Trp-6.48) of the CWXP motif located at the bottom of the main ligand-binding pocket in TM-VI is believed to function as a rotameric microswitch in the activation process of seven-transmembrane (7TM) receptors. Molecular dynamics simulations in rhodopsin demonstrated that rotation around the chi1 torsion angle of Trp-VI:13 brings its side chain close to the equally highly conserved Phe-V:13 (Phe-5.47) in TM-V. In the ghrelin receptor, engineering of high affinity metal-ion sites between these positions confirmed their close spatial proximity. Mutational analysis was performed in the ghrelin receptor with multiple substitutions and with Ala substitutions in GPR119, GPR39, and the β2-adrenergic receptor as well as the NK1 receptor. In all of these cases, it was found that mutation of the Trp-VI:13 rotameric switch itself eliminated the constitutive signaling and strongly impaired agonist-induced signaling without affecting agonist affinity and potency. Ala substitution of Phe-V:13, the presumed interaction partner for Trp-VI:13, also in all cases impaired both the constitutive and the agonist-induced receptor signaling, but not to the same degree as observed in the constructs where Trp-VI:13 itself was mutated, but again without affecting agonist potency. In a proposed active receptor conformation generated by molecular simulations, where the extracellular segment of TM-VI is tilted inwards in the main ligand-binding pocket, Trp-VI:13 could rotate into a position where it obtained an ideal aromatic-aromatic interaction with Phe-V:13. It is concluded that Phe-V:13 can serve as an aromatic lock for the proposed active conformation of the Trp-VI:13 rotameric switch, being involved in the global movement of TM-V and TM-VI in 7TM receptor activation.


Cell Metabolism | 2014

The Melanocortin-4 Receptor Is Expressed in Enteroendocrine L Cells and Regulates the Release of Peptide YY and Glucagon-like Peptide 1 In Vivo

Brandon L. Panaro; Iain R. Tough; Maja S. Engelstoft; Robert T. Matthews; Gregory J. Digby; Cathrine Laustrup Møller; Berit Svendsen; Fiona M. Gribble; Frank Reimann; Jens J. Holst; Birgitte Holst; Thue W. Schwartz; Helen M. Cox; Roger D. Cone

The melanocortin-4 receptor (MC4R) is expressed in the brainstem and vagal afferent nerves and regulates a number of aspects of gastrointestinal function. Here we show that the receptor is also diffusely expressed in cells of the gastrointestinal system, from stomach to descending colon. Furthermore, MC4R is the second most highly enriched GPCR in peptide YY (PYY) and glucagon-like peptide 1 (GLP-1) expressing enteroendocrine L cells. When vectorial ion transport is measured across mouse or human intestinal mucosa, administration of α-MSH induces a MC4R-specific PYY-dependent antisecretory response consistent with a role for the MC4R in paracrine inhibition of electrolyte secretion. Finally, MC4R-dependent acute PYY and GLP-1 release from L cells can be stimulated in vivo by intraperitoneal (i.p.) administration of melanocortin peptides to mice. This suggests physiological significance for MC4R in L cells and indicates a previously unrecognized peripheral role for the MC4R, complementing vagal and central receptor functions.


Current Opinion in Pharmacology | 2013

Enteroendocrine cell types revisited.

Maja S. Engelstoft; Kristoffer L. Egerod; Mari L. Lund; Thue W. Schwartz

The GI-tract is profoundly involved in the control of metabolism through peptide hormones secreted from enteroendocrine cells scattered throughout the gut mucosa. A large number of recently generated transgenic reporter mice have allowed for direct characterization of biochemical and cell biological properties of these previously highly elusive enteroendocrine cells. In particular the surprisingly broad co-expression of six functionally related hormones in the intestinal enteroendocrine cells indicates that it should be possible to control not only the hormone secretion but also the type and number of enteroendocrine cells. However, this will require a more deep understanding of the factors controlling differentiation, gene expression and specification of the enteroendocrine cells during their weekly renewal from progenitor cells in the crypts of the mucosa.


Endocrinology | 2016

Neurotensin Is Coexpressed, Coreleased, and Acts Together With GLP-1 and PYY in Enteroendocrine Control of Metabolism.

Kaare V. Grunddal; Cecilia F. Ratner; Berit Svendsen; Felix Sommer; Maja S. Engelstoft; Andreas N. Madsen; Jens Pedersen; Mark K. Nøhr; Kristoffer L. Egerod; Andrea R. Nawrocki; Timothy Kowalski; Andrew D. Howard; Steen Seier Poulsen; Stefan Offermanns; Fredrik Bäckhed; Jens J. Holst; Birgitte Holst; Thue W. Schwartz

The 2 gut hormones glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are well known to be coexpressed, costored, and released together to coact in the control of key metabolic target organs. However, recently, it became clear that several other gut hormones can be coexpressed in the intestinal-specific lineage of enteroendocrine cells. Here, we focus on the anatomical and functional consequences of the coexpression of neurotensin with GLP-1 and PYY in the distal small intestine. Fluorescence-activated cell sorting analysis, laser capture, and triple staining demonstrated that GLP-1 cells in the crypts become increasingly multihormonal, ie, coexpressing PYY and neurotensin as they move up the villus. Proglucagon promoter and pertussis toxin receptor-driven cell ablation and reappearance studies indicated that although all the cells die, the GLP-1 cells reappear more quickly than PYY- and neurotensin-positive cells. High-resolution confocal fluorescence microscopy demonstrated that neurotensin is stored in secretory granules distinct from GLP-1 and PYY storing granules. Nevertheless, the 3 peptides were cosecreted from both perfused small intestines and colonic crypt cultures in response to a series of metabolite, neuropeptide, and hormonal stimuli. Importantly, neurotensin acts synergistically, ie, more than additively together with GLP-1 and PYY to decrease palatable food intake and inhibit gastric emptying, but affects glucose homeostasis in a more complex manner. Thus, neurotensin is a major gut hormone deeply integrated with GLP-1 and PYY, which should be taken into account when exploiting the enteroendocrine regulation of metabolism pharmacologically.


Journal of Biological Chemistry | 2011

Unique Interaction Pattern for a Functionally Biased Ghrelin Receptor Agonist

Bjørn Sivertsen; Manja Lang; Thomas M. Frimurer; Nicholas D. Holliday; Anders Bach; Sylvia Els; Maja S. Engelstoft; Pia Steen Petersen; Andreas N. Madsen; Thue W. Schwartz; Annette G. Beck-Sickinger; Birgitte Holst

Based on the conformationally constrained d-Trp-Phe-d-Trp (wFw) core of the prototype inverse agonist [d-Arg1,d-Phe5,d-Trp7,9,Leu11]substance P, a series of novel, small, peptide-mimetic agonists for the ghrelin receptor were generated. By using various simple, ring-constrained spacers connecting the d-Trp-Phe-d-Trp motif with the important C-terminal carboxyamide group, 40 nm agonism potency was obtained and also in one case (wFw-Isn-NH2, where Isn is isonipecotic acid) ∼80% efficacy. However, in contrast to all previously reported ghrelin receptor agonists, the piperidine-constrained wFw-Isn-NH2 was found to be a functionally biased agonist. Thus, wFw-Isn-NH2 mediated potent and efficacious signaling through the Gαq and ERK1/2 signaling pathways, but in contrast to all previous ghrelin receptor agonists it did not signal through the serum response element, conceivably the Gα12/13 pathway. The recognition pattern of wFw-Isn-NH2 with the ghrelin receptor also differed significantly from that of all previously characterized unbiased agonists. Most importantly, wFw-Isn-NH2 was not dependent on GluIII:09 (Glu3.33), which otherwise is an obligatory TM III anchor point residue for ghrelin agonists. Molecular modeling and docking experiments indicated that wFw-Isn-NH2 binds in the classical agonist binding site between the extracellular segments of TMs III, VI, and VII, interacting closely with the aromatic cluster between TMs VI and VII, but that it does so in an opposite orientation as compared with, for example, the wFw peptide agonists. It is concluded that the novel peptide-mimetic ligand wFw-Isn-NH2 is a biased ghrelin receptor agonist and that the selective signaling pattern presumably is due to its unique receptor recognition pattern lacking interaction with key residues especially in TM III.


Endocrinology | 2015

Transcriptional and Functional Characterization of the G Protein-Coupled Receptor Repertoire of Gastric Somatostatin Cells

Kristoffer L. Egerod; Maja S. Engelstoft; Mari L. Lund; Kaare V. Grunddal; Mirabella Zhao; Dominique Barir-Jensen; Eva B. Nygaard; Natalia Petersen; Jens J. Holst; Thue W. Schwartz

In the stomach, somatostatin (SST) acts as a general paracrine negative regulator of exocrine secretion of gastric acid and pepsinogen and endocrine secretion of gastrin, ghrelin, and histamine. Using reporter mice expressing red fluorescent protein (RFP) under control of the SST promotor, we have characterized the G protein-coupled receptors expressed in gastric Sst-RFP-positive cells and probed their effects on SST secretion in primary cell cultures. Surprisingly, besides SST, amylin and PYY were also highly enriched in the SST cells. Several receptors found to regulate SST secretion were highly expressed and/or enriched. 1) The metabolite receptors calcium-sensing receptor and free fatty acid receptor 4 (GPR120) functioned as positive and negative regulators, respectively. 2) Among the neurotransmitter receptors, adrenergic receptors α1a, α2a, α2b, and β1 were all highly expressed, with norepinephrine and isoproterenol acting as positive regulators. The muscarinic receptor M3 acted as a positive regulator, whereas M4 was conceivably a negative regulator. 3) Of the hormone receptors, the GLP-1 and GIP receptors, CCKb (stimulated by both CCK and gastrin) and surprisingly the melanocortin MC1 receptor were all positive regulators. 4) The neuropeptide receptors for calcitonin gene-related peptide, adrenomedullin, and vasoactive intestinal peptide acted as positive regulators, no effect was observed using galanin and nociceptin although transcripts for the corresponding receptors appeared highly expressed. 5) The SST receptors 1 and 2 functioned in an autocrine negative feedback loop. Thus, the article provides a comprehensive map of receptors through which SST secretion is regulated by hormones, neurotransmitters, neuropeptides and metabolites that act directly on the SST cells in the gastric mucosa.

Collaboration


Dive into the Maja S. Engelstoft's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Birgitte Holst

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Jens J. Holst

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mari L. Lund

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Maria Hauge

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Mark K. Nøhr

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge