Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Majid Nikpay is active.

Publication


Featured researches published by Majid Nikpay.


The New England Journal of Medicine | 2014

Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease

Jacy R. Crosby; Gina M. Peloso; Paul L. Auer; David R. Crosslin; Nathan O. Stitziel; Leslie A. Lange; Yingchang Lu; Zheng-zheng Tang; He Zhang; George Hindy; Nicholas G. D. Masca; Kathleen Stirrups; Stavroula Kanoni; Ron Do; Goo Jun; Youna Hu; Hyun Min Kang; Chenyi Xue; Anuj Goel; Martin Farrall; Stefano Duga; Pier Angelica Merlini; Rosanna Asselta; Domenico Girelli; Nicola Martinelli; Wu Yin; Dermot F. Reilly; Elizabeth K. Speliotes; Caroline S. Fox; Kristian Hveem

BACKGROUND Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. METHODS We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. RESULTS An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)). CONCLUSIONS Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.).


Nature | 2015

Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction

Ron Do; Nathan O. Stitziel; Hong-Hee Won; Anders Jørgensen; Stefano Duga; Pier Angelica Merlini; Adam Kiezun; Martin Farrall; Anuj Goel; Or Zuk; Illaria Guella; Rosanna Asselta; Leslie A. Lange; Gina M. Peloso; Paul L. Auer; Domenico Girelli; Nicola Martinelli; Deborah N. Farlow; Mark A. DePristo; Robert Roberts; Alex Stewart; Danish Saleheen; John Danesh; Stephen E. Epstein; Suthesh Sivapalaratnam; G. Kees Hovingh; John J. P. Kastelein; Nilesh J. Samani; Heribert Schunkert; Jeanette Erdmann

Summary Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance1,2. When MI occurs early in life, the role of inheritance is substantially greater1. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families3–8 whereas common variants at more than 45 loci have been associated with MI risk in the population9–15. Here, we evaluate the contribution of rare mutations to MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes where rare coding-sequence mutations were more frequent in cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare, damaging mutations (3.1% of cases versus 1.3% of controls) were at 2.4-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). This sequence-based estimate of the proportion of early MI cases due to LDLR mutations is remarkably similar to an estimate made more than 40 years ago using total cholesterol16. At apolipoprotein A-V (APOA5), carriers of rare nonsynonymous mutations (1.4% of cases versus 0.6% of controls) were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase15,17 and apolipoprotein C318,19. When combined, these observations suggest that, beyond LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.


Nature Genetics | 2014

Meta-analysis of gene-level tests for rare variant association.

Dajiang J. Liu; Gina M. Peloso; Xiaowei Zhan; Oddgeir L. Holmen; Matthew Zawistowski; Shuang Feng; Majid Nikpay; Paul L. Auer; Anuj Goel; He Zhang; Ulrike Peters; Martin Farrall; Marju Orho-Melander; Charles Kooperberg; Ruth McPherson; Hugh Watkins; Cristen J. Willer; Kristian Hveem; Olle Melander; Sekar Kathiresan; Gonçalo R. Abecasis

The majority of reported complex disease associations for common genetic variants have been identified through meta-analysis, a powerful approach that enables the use of large sample sizes while protecting against common artifacts due to population structure and repeated small-sample analyses sharing individual-level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the focus of analysis. Here we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable-threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features from single-variant meta-analysis approaches and demonstrate its use in a study of blood lipid levels in ∼18,500 individuals genotyped with exome arrays.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Exome Sequencing and Directed Clinical Phenotyping Diagnose Cholesterol Ester Storage Disease Presenting as Autosomal Recessive Hypercholesterolemia

Nathan O. Stitziel; Sigrid W. Fouchier; Barbara Sjouke; Gina M. Peloso; Alessa M. Moscoso; Paul L. Auer; Anuj Goel; Bruna Gigante; Timothy A. Barnes; Olle Melander; Marju Orho-Melander; Stefano Duga; Suthesh Sivapalaratnam; Majid Nikpay; Nicola Martinelli; Domenico Girelli; Rebecca D. Jackson; Charles Kooperberg; Leslie A. Lange; Diego Ardissino; Ruth McPherson; Martin Farrall; Hugh Watkins; Muredach P. Reilly; Daniel J. Rader; Ulf de Faire; Heribert Schunkert; Jeanette Erdmann; Nilesh J. Samani; Lawrence Charnas

Objective—Autosomal recessive hypercholesterolemia is a rare inherited disorder, characterized by extremely high total and low-density lipoprotein cholesterol levels, that has been previously linked to mutations in LDLRAP1. We identified a family with autosomal recessive hypercholesterolemia not explained by mutations in LDLRAP1 or other genes known to cause monogenic hypercholesterolemia. The aim of this study was to identify the molecular pathogenesis of autosomal recessive hypercholesterolemia in this family. Approach and Results—We used exome sequencing to assess all protein-coding regions of the genome in 3 family members and identified a homozygous exon 8 splice junction mutation (c.894G>A, also known as E8SJM) in LIPA that segregated with the diagnosis of hypercholesterolemia. Because homozygosity for mutations in LIPA is known to cause cholesterol ester storage disease, we performed directed follow-up phenotyping by noninvasively measuring hepatic cholesterol content. We observed abnormal hepatic accumulation of cholesterol in the homozygote individuals, supporting the diagnosis of cholesterol ester storage disease. Given previous suggestions of cardiovascular disease risk in heterozygous LIPA mutation carriers, we genotyped E8SJM in >27 000 individuals and found no association with plasma lipid levels or risk of myocardial infarction, confirming a true recessive mode of inheritance. Conclusions—By integrating observations from Mendelian and population genetics along with directed clinical phenotyping, we diagnosed clinically unapparent cholesterol ester storage disease in the affected individuals from this kindred and addressed an outstanding question about risk of cardiovascular disease in LIPA E8SJM heterozygous carriers.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Systems Genetics Analysis of Genome-Wide Association Study Reveals Novel Associations Between Key Biological Processes and Coronary Artery Disease

Sujoy Ghosh; Juan Vivar; Christopher P. Nelson; Christina Willenborg; Ayellet V. Segrè; Ville-Petteri Mäkinen; Majid Nikpay; J. Erdmann; Stefan Blankenberg; Christopher J. O’Donnell; Winfried März; Reijo Laaksonen; Alexandre F.R. Stewart; Stephen E. Epstein; Svati H. Shah; Christopher B. Granger; Stanley L. Hazen; Sekar Kathiresan; M. P. Reilly; Xia Yang; Thomas Quertermous; Nilesh J. Samani; Heribert Schunkert; Themistocles L. Assimes; Ruth McPherson

Objective— Genome-wide association studies have identified multiple genetic variants affecting the risk of coronary artery disease (CAD). However, individually these explain only a small fraction of the heritability of CAD and for most, the causal biological mechanisms remain unclear. We sought to obtain further insights into potential causal processes of CAD by integrating large-scale GWA data with expertly curated databases of core human pathways and functional networks. Approaches and Results— Using pathways (gene sets) from Reactome, we carried out a 2-stage gene set enrichment analysis strategy. From a meta-analyzed discovery cohort of 7 CAD genome-wide association study data sets (9889 cases/11 089 controls), nominally significant gene sets were tested for replication in a meta-analysis of 9 additional studies (15 502 cases/55 730 controls) from the Coronary ARtery DIsease Genome wide Replication and Meta-analysis (CARDIoGRAM) Consortium. A total of 32 of 639 Reactome pathways tested showed convincing association with CAD (replication P<0.05). These pathways resided in 9 of 21 core biological processes represented in Reactome, and included pathways relevant to extracellular matrix (ECM) integrity, innate immunity, axon guidance, and signaling by PDRF (platelet-derived growth factor), NOTCH, and the transforming growth factor-&bgr;/SMAD receptor complex. Many of these pathways had strengths of association comparable to those observed in lipid transport pathways. Network analysis of unique genes within the replicated pathways further revealed several interconnected functional and topologically interacting modules representing novel associations (eg, semaphoring-regulated axonal guidance pathway) besides confirming known processes (lipid metabolism). The connectivity in the observed networks was statistically significant compared with random networks (P<0.001). Network centrality analysis (degree and betweenness) further identified genes (eg, NCAM1, FYN, FURIN, etc) likely to play critical roles in the maintenance and functioning of several of the replicated pathways. Conclusions— These findings provide novel insights into how genetic variation, interpreted in the context of biological processes and functional interactions among genes, may help define the genetic architecture of CAD.


Journal of the American Heart Association | 2014

Functional Analysis of the TRIB1 Associated Locus Linked to Plasma Triglycerides and Coronary Artery Disease

Adrianna Douvris; Sébastien Soubeyrand; Thet Naing; Amy Martinuk; Majid Nikpay; Andrew Williams; Julie K. Buick; Carole L. Yauk; Ruth McPherson

Background The TRIB1 locus has been linked to hepatic triglyceride metabolism in mice and to plasma triglycerides and coronary artery disease in humans. The lipid‐associated single nucleotide polymorphisms (SNPs), identified by genome‐wide association studies, are located ≈30 kb downstream from TRIB1, suggesting complex regulatory effects on genes or pathways relevant to hepatic triglyceride metabolism. The goal of this study was to investigate the functional relationship between common SNPs at the TRIB1 locus and plasma lipid traits. Methods and Results Characterization of the risk locus reveals that it encompasses a gene, TRIB1‐associated locus (TRIBAL), composed of a well‐conserved promoter region and an alternatively spliced transcript. Bioinformatic analysis and resequencing identified a single SNP, rs2001844, within the promoter region that associates with increased plasma triglycerides and reduced high‐density lipoprotein cholesterol and coronary artery disease risk. Further, correction for triglycerides as a covariate indicated that the genome‐wide association studies association is largely dependent on triglycerides. In addition, we show that rs2001844 is an expression trait locus (eQTL) for TRIB1 expression in blood and alters TRIBAL promoter activity in a reporter assay model. The TRIBAL transcript has features typical of long noncoding RNAs, including poor sequence conservation. Modulation of TRIBAL expression had limited impact on either TRIB1 or lipid regulatory genes mRNA levels in human hepatocyte models. In contrast, TRIB1 knockdown markedly increased TRIBAL expression in HepG2 cells and primary human hepatocytes. Conclusions These studies demonstrate an interplay between a novel locus, TRIBAL, and TRIB1. TRIBAL is located in the genome‐wide association studies identified risk locus, responds to altered expression of TRIB1, harbors a risk SNP that is an eQTL for TRIB1 expression, and associates with plasma triglyceride concentrations.


Journal of Lipid Research | 2014

Adiposity Significantly Modifies Genetic Risk for Dyslipidemia

Christopher B. Cole; Majid Nikpay; Paulina Lau; Alexandre F.R. Stewart; Robert W. Davies; George A. Wells; Robert Dent; Ruth McPherson

Recent genome-wide association studies have identified multiple loci robustly associated with plasma lipids, which also contribute to extreme lipid phenotypes. However, these common genetic variants explain <12% of variation in lipid traits. Adiposity is also an important determinant of plasma lipoproteins, particularly plasma TGs and HDL cholesterol (HDLc) concentrations. Thus, interactions between genes and clinical phenotypes may contribute to this unexplained heritability. We have applied a weighted genetic risk score (GRS) for both plasma TGs and HDLc in two large cohorts at the extremes of BMI. Both BMI and GRS were strongly associated with these lipid traits. A significant interaction between obese/lean status and GRS was noted for each of TG (PInteraction = 2.87 × 10−4) and HDLc (PInteraction = 1.05 × 10−3). These interactions were largely driven by SNPs tagging APOA5, glucokinase receptor (GCKR), and LPL for TG, and cholesteryl ester transfer protein (CETP), GalNAc-transferase (GALNT2), endothelial lipase (LIPG), and phospholipid transfer protein (PLTP) for HDLc. In contrast, the GRSLDL cholesterol × adiposity interaction was not significant. Sexual dimorphism was evident for the GRSHDL on HDLc in obese (PInteraction = 0.016) but not lean subjects. SNP by BMI interactions may provide biological insight into specific genetic associations and missing heritability.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2016

Functional Analysis of a Novel Genome-Wide Association Study Signal in SMAD3 That Confers Protection From Coronary Artery Disease

Adam W. Turner; Amy Martinuk; Anada Silva; Paulina Lau; Majid Nikpay; Per Eriksson; Lasse Folkersen; Ljubica Perisic; Ulf Hedin; Sébastien Soubeyrand; Ruth McPherson

Objective—A recent genome-wide association study meta-analysis identified an intronic single nucleotide polymorphism in SMAD3, rs56062135C>T, the minor allele (T) which associates with protection from coronary artery disease. Relevant to atherosclerosis, SMAD3 is a key contributor to transforming growth factor-&bgr; pathway signaling. Here, we seek to identify ≥1 causal coronary artery disease–associated single nucleotide polymorphisms at the SMAD3 locus and characterize mechanisms whereby the risk allele(s) contribute to coronary artery disease risk. Approach and Results—By genetic and epigenetic fine mapping, we identified a candidate causal single nucleotide polymorphism rs17293632C>T (D′, 0.97; r2, 0.94 with rs56062135) in intron 1 of SMAD3 with predicted functional effects. We show that the sequence encompassing rs17293632 acts as a strong enhancer in human arterial smooth muscle cells. The common allele (C) preserves an activator protein (AP)-1 site and enhancer function, whereas the protective (T) allele disrupts the AP-1 site and significantly reduces enhancer activity (P<0.001). Pharmacological inhibition of AP-1 activity upstream demonstrates that this allele-specific enhancer effect is AP-1 dependent (P<0.001). Chromatin immunoprecipitation experiments reveal binding of several AP-1 component proteins with preferential binding to the (C) allele. We show that rs17293632 is an expression quantitative trait locus for SMAD3 in blood and atherosclerotic plaque with reduced expression of SMAD3 in carriers of the protective allele. Finally, siRNA knockdown of SMAD3 in human arterial smooth muscle cells increases cell viability, consistent with an antiproliferative role. Conclusions—The coronary artery disease–associated rs17293632C>T single nucleotide polymorphism represents a novel functional cis-acting element at the SMAD3 locus. The protective (T) allele of rs17293632 disrupts a consensus AP-1 binding site in a SMAD3 intron 1 enhancer, reduces enhancer activity and SMAD3 expression, altering human arterial smooth muscle cell proliferation.


Current Opinion in Lipidology | 2015

Gene-environment interaction in dyslipidemia.

Christopher B. Cole; Majid Nikpay; Ruth McPherson

Purpose of review Recent genome-wide association studies have identified numerous common genetic variants associated with plasma lipid traits and have provided new insights into the regulation of lipoprotein metabolism including the identification of novel biological processes. These findings add to a body of existing data on dietary and environmental factors affecting plasma lipids. Here we explore how interactions between genetic risk factors and other phenotypes may explain some of the missing heritability of plasma lipid traits. Recent findings Recent studies have identified true statistical interaction between several environmental and genetic risk factors and their effects on plasma lipid fractions. These include interactions between behaviors such as smoking or exercise as well as specific dietary nutrients and the effect size of specific genetic variants on plasma lipid traits risk and modifying effects of measures of adiposity on the cumulative impact of a number of common genetic variants on each of plasma triglycerides and HDL cholesterol. Summary Interactions between genetic risk factors and clinical phenotypes may account for some of the unexplained heritability of plasma lipid traits. Recent studies provide biological insight into specific genetic associations and may aid in the identification of dyslipidemic patients for whom specific lifestyle interventions are likely to be most effective.


Atherosclerosis | 2015

Functional interaction between COL4A1/COL4A2 and SMAD3 risk loci for coronary artery disease

Adam W. Turner; Majid Nikpay; Anada Silva; Paulina Lau; Amy Martinuk; Tara Linseman; Sébastien Soubeyrand; Ruth McPherson

OBJECTIVE The COL4A1/COL4A2 region on chromosome 13q34 is a highly replicated locus for coronary artery disease (CAD). In the normal arterial wall, type IV collagen acts to inhibit smooth muscle cell proliferation. Its production is in part a function of TGFβ signaling, but the specific regulatory mechanisms, especially in humans, have not been defined. Our aim was to decipher TGFβ signaling components important in the regulation of COL4A1 and COL4A2 and determine whether these components showed genetic interaction with the COL4A1/COL4A2 locus for CAD association. METHODS AND RESULTS Experiments were performed in primary human aortic smooth muscle cells and HT1080 fibroblasts. Pharmacological inhibition of the TGFβ1 receptor and subsequent SMAD protein phosphorylation by treatment with an ALK5 inhibitor prevented the increase in COL4A1/COL4A2 mRNA (p < 0.001) and protein expression in response to TGFβ1 stimulation. In contrast, inhibition of the non-canonical TGFβ signaling pathways was without effect. siRNA mediated knockdown of SMAD3 and SMAD4 abolished the stimulatory effects of TGFβ1 on COL4A1/COL4A2 (p < 0.001) whereas SMAD2 knockdown had no effect. In luciferase reporter assays, neither SMAD3 overexpression nor TGFβ1 treatment altered COL4A1 or COL4A2 promoter activity, supportive of more complex regulation of type IV collagen gene expression by the TGFβ/SMAD3 signaling pathway. Epistasis analysis in 5 CAD case/control cohorts revealed that SMAD3 and COL4A1/COL4A2 display statistical interaction for CAD association. CONCLUSIONS These findings demonstrate that SMAD3 is a necessary factor for TGFβ-mediated stimulation of mRNA and protein expression of type IV collagen genes in human vascular smooth muscle cells. Epistasis analyses further supports the hypothesis that the SMAD3-dependent regulation of COL4A1/COL4A2 may be of functional significance for CAD pathogenesis.

Collaboration


Dive into the Majid Nikpay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nilesh J. Samani

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge