Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maki Kobayashi is active.

Publication


Featured researches published by Maki Kobayashi.


Proceedings of the National Academy of Sciences of the United States of America | 2009

AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination

Maki Kobayashi; Masatoshi Aida; Hitoshi Nagaoka; Nasim A. Begum; Yoko Kitawaki; Mikiyo Nakata; Andre Stanlie; Tomomitsu Doi; Lucia Kato; Il-mi Okazaki; Reiko Shinkura; Masamichi Muramatsu; Kazuo Kinoshita; Tasuku Honjo

To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5′ to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Sμ region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.


Journal of Immunology | 2012

An Evolutionary View of the Mechanism for Immune and Genome Diversity

Lucia Kato; Andre Stanlie; Nasim A. Begum; Maki Kobayashi; Masatoshi Aida; Tasuku Honjo

An ortholog of activation-induced cytidine deaminase (AID) was, evolutionarily, the first enzyme to generate acquired immune diversity by catalyzing gene conversion and probably somatic hypermutation (SHM). AID began to mediate class switch recombination (CSR) only after the evolution of frogs. Recent studies revealed that the mechanisms for generating immune and genetic diversity share several critical features. Meiotic recombination, V(D)J recombination, CSR, and SHM all require H3K4 trimethyl histone modification to specify the target DNA. Genetic instability related to dinucleotide or triplet repeats depends on DNA cleavage by topoisomerase 1, which also initiates DNA cleavage in both SHM and CSR. These similarities suggest that AID hijacked the basic mechanism for genome instability when AID evolved in jawless fish. Thus, the risk of introducing genome instability into nonimmunoglobulin loci is unavoidable but tolerable compared with the advantage conferred on the host of being protected against pathogens by the enormous Ig diversification.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Histone chaperone Spt6 is required for class switch recombination but not somatic hypermutation

Il-mi Okazaki; Katsuya Okawa; Maki Kobayashi; Kiyotsugu Yoshikawa; Shimpei Kawamoto; Hitoshi Nagaoka; Reiko Shinkura; Yoko Kitawaki; Hisaaki Taniguchi; Tohru Natsume; Shun-ichiro Iemura; Tasuku Honjo

Activation-induced cytidine deaminase (AID) is shown to be essential and sufficient to induce two genetic alterations in the Ig loci: class switch recombination (CSR) and somatic hypermutation (SHM). However, it is still unknown how a single-molecule AID differentially regulates CSR and SHM. Here we identified Spt6 as an AID-interacting protein by yeast two-hybrid screening and immunoprecipitation followed by mass spectrometry. Knockdown of Spt6 resulted in severe reduction of CSR in both the endogenous Ig locus in B cells and an artificial substrate in fibroblast cells. Conversely, knockdown of Spt6 did not reduce but slightly enhanced SHM in an artificial substrate in B cells, indicating that Spt6 is required for AID to induce CSR but not SHM. These results suggest that Spt6 is involved in differential regulation of CSR and SHM by AID.


International Immunology | 2010

Preventing AID, a physiological mutator, from deleterious activation: regulation of the genomic instability that is associated with antibody diversity

Hitoshi Nagaoka; Thinh Huy Tran; Maki Kobayashi; Masatoshi Aida; Tasuku Honjo

Activation-induced cytidine deaminase (AID) is essential and sufficient to accomplish class-switch recombination and somatic hypermutation, which are two genetic events required for the generation of antibody-mediated memory responses. However, AID can also introduce genomic instability, giving rise to chromosomal translocation and/or mutations in proto-oncogenes. It is therefore important for cells to suppress AID expression unless B lymphocytes are stimulated by pathogens. The mechanisms for avoiding the accidental activation of AID and thereby avoiding genomic instability can be classified into three types: (i) transcriptional regulation, (ii) post-transcriptional regulation and (iii) target specificity. This review summarizes the recently elucidated comprehensive transcriptional regulation mechanisms of the AID gene and the post-transcriptional regulation that may be critical for preventing excess AID activity. Finally, we discuss why AID targets not only Igs but also other proto-oncogenes. AID targets many genes but it is not totally promiscuous and the criteria that specify its targets are unclear. A recent finding that a non-B DNA structure forms upon a decrease in topoisomerase 1 expression may explain this paradoxical target specificity determination. Evolution has chosen AID as a mutator of Ig genes because of its efficient DNA cleavage activity, even though its presence increases the risk of genomic instability. This is probably because immediate protection against pathogens is more critical for species survival than complete protection from the slower acting consequences of genomic instability, such as tumor formation.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation

Maki Kobayashi; Zahra Sabouri; Somayeh Sabouri; Yoko Kitawaki; Yves Pommier; Takaya Abe; Hiroshi Kiyonari; Tasuku Honjo

Somatic hypermutation (SHM) and class-switch recombination (CSR) of the Ig gene require both the transcription of the locus and the expression of activation-induced cytidine deaminase (AID). During CSR, AID decreases the amount of topoisomerase I (Top1); this decrease alters the DNA structure and induces cleavage in the S region. Similarly, Top1 is involved in transcription-associated mutation at dinucleotide repeats in yeast and in triplet-repeat contraction in mammals. Here, we report that the AID-induced decrease in Top1 is critical for SHM. Top1 knockdown or haploinsufficiency enhanced SHM, whereas Top1 overexpression down-regulated it. A specific Top1 inhibitor, camptothecin, suppressed SHM, indicating that Top1s activity is required for DNA cleavage. Nonetheless, suppression of transcription abolished SHM, even in cells with Top1 knockdown, suggesting that transcription is critical. These results are consistent with a model proposed for CSR and triplet instability, in which transcription-induced non-B structure formation is enhanced by Top1 reduction and provides the target for irreversible cleavage by Top1. We speculate that the mechanism for transcription-coupled genome instability was adopted to generate immune diversity when AID evolved.


Advances in Cancer Research | 2012

The AID dilemma: infection, or cancer?

Tasuku Honjo; Maki Kobayashi; Nasim A. Begum; Ai Kotani; Somayeh Sabouri; Hitoshi Nagaoka

Activation-induced cytidine deaminase (AID), which is both essential and sufficient for forming antibody memory, is also linked to tumorigenesis. AID is found in many B lymphomas, in myeloid leukemia, and in pathogen-induced tumors such as adult T cell leukemia. Although there is no solid evidence that AID causes human tumors, AID-transgenic and AID-deficient mouse models indicate that AID is both sufficient and required for tumorigenesis. Recently, AIDs ability to cleave DNA has been shown to depend on topoisomerase 1 (Top1) and a histone H3K4 epigenetic mark. When the level of Top1 protein is decreased by AID activation, it induces irreversible cleavage in highly transcribed targets. This finding and others led to the idea that there is an evolutionary link between meiotic recombination and class switch recombination, which share H3K4 trimethyl, topoisomerase, the MRN complex, mismatch repair family proteins, and exonuclease 3. As Top1 has recently been shown to be involved in many transcription-associated genome instabilities, it is likely that AID took advantage of basic genome instability or diversification to evolve its mechanism for immune diversity. AID targets are therefore not highly specific to immunoglobulin genes and are relatively abundant, although they have strict requirements for transcription-induced H3K4 trimethyl modification and repetitive sequences prone to forming non-B structures. Inevitably, AID-dependent cleavage takes place in nonimmunoglobulin targets and eventually causes tumors. However, battles against infection are waged in the context of acute emergencies, while tumorigenesis is rather a chronic, long-term process. In the interest of survival, vertebrates must have evolved AID to prevent infection despite its long-term risk of causing tumorigenesis.


Nature Communications | 2016

Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability

Afzal Husain; Nasim A. Begum; Takako Taniguchi; Hisaaki Taniguchi; Maki Kobayashi; Tasuku Honjo

Topoisomerase 1, an enzyme that relieves superhelical tension, is implicated in transcription-associated mutagenesis and genome instability-associated with neurodegenerative diseases as well as activation-induced cytidine deaminase. From proteomic analysis of TOP1-associated proteins, we identify SMARCA4, an ATP-dependent chromatin remodeller; FACT, a histone chaperone; and H3K4me3, a transcriptionally active chromatin marker. Here we show that SMARCA4 knockdown in a B-cell line decreases TOP1 recruitment to chromatin, and leads to increases in Igh/c-Myc chromosomal translocations, variable and switch region mutations and negative superhelicity, all of which are also observed in response to TOP1 knockdown. In contrast, FACT knockdown inhibits association of TOP1 with H3K4me3, and severely reduces DNA cleavage and Igh/c-Myc translocations, without significant effect on TOP1 recruitment to chromatin. We thus propose that SMARCA4 is involved in the TOP1 recruitment to general chromatin, whereas FACT is required for TOP1 binding to H3K4me3 at non-B DNA containing chromatin for the site-specific cleavage.


Proceedings of the National Academy of Sciences of the United States of America | 2014

C-terminal region of activation-induced cytidine deaminase (AID) is required for efficient class switch recombination and gene conversion

Somayeh Sabouri; Maki Kobayashi; Nasim A. Begum; Jianliang Xu; Kouji Hirota; Tasuku Honjo

Significance Activation-induced cytidine deaminase (AID) initiates class switch recombination (CSR) by inducing Ig locus-specific single-strand breaks (SSBs). AID C-terminal mutants (C-mt) generate SSBs efficiently but fail to support CSR. We found that residual CSR junctions in AID C-mt were repaired predominantly by alternative end-joining repair and that the recruitment of classical nonhomologous end-joining factors such as Ku80 to the S region was reduced consistently. Conversely, the accumulation of poly (ADP)-ribose polymerase1 was observed in the AID C-mt JP8Bdel. AID C-mt also showed a relative reduction in gene conversion (GC). Moreover, AID C-mt did not support synapse formation in the donor switch regions, indicating that the C-terminal region of AID is essential for efficient generation of double-strand breaks in CSR and GC and possibly for synapse formation during CSR. Activation-induced cytidine deaminase (AID) introduces single-strand breaks (SSBs) to initiate class switch recombination (CSR), gene conversion (GC), and somatic hypermutation (SHM). CSR is mediated by double-strand breaks (DSBs) at donor and acceptor switch (S) regions, followed by pairing of DSB ends in two S regions and their joining. Because AID mutations at its C-terminal region drastically impair CSR but retain its DNA cleavage and SHM activity, the C-terminal region of AID likely is required for the recombination step after the DNA cleavage. To test this hypothesis, we analyzed the recombination junctions generated by AID C-terminal mutants and found that 0- to 3-bp microhomology junctions are relatively less abundant, possibly reflecting the defects of the classical nonhomologous end joining (C-NHEJ). Consistently, the accumulation of C-NHEJ factors such as Ku80 and XRCC4 was decreased at the cleaved S region. In contrast, an SSB-binding protein, poly (ADP)-ribose polymerase1, was recruited more abundantly, suggesting a defect in conversion from SSB to DSB. In addition, recruitment of critical DNA synapse factors such as 53BP1, DNA PKcs, and UNG at the S region was reduced during CSR. Furthermore, the chromosome conformation capture assay revealed that DNA synapse formation is impaired drastically in the AID C-terminal mutants. Interestingly, these mutants showed relative reduction in GC compared with SHM in chicken DT40 cells. Collectively, our data indicate that the C-terminal region of AID is required for efficient generation of DSB in CSR and GC and thus for the subsequent pairing of cleaved DNA ends during recombination in CSR.


Proceedings of the National Academy of Sciences of the United States of America | 2014

APE1 is dispensable for S-region cleavage but required for its repair in class switch recombination

Jianliang Xu; Afzal Husain; Wenjun Hu; Tasuku Honjo; Maki Kobayashi

Significance Apurinic/apyrimidinic endonuclease 1 (APE1) has been shown to be a critical endonuclease required for class switch recombination (CSR). Here we show that APE1’s endonuclease activity, but not its redox regulation or transcriptional regulation activity, is important for CSR. Conversely, APE1 is dispensable for activation-induced cytidine deaminase (AID)-induced somatic hypermutation (SHM) as well as IgH/c-myc translocation. Moreover, during CSR, APE1 is not required for AID-induced S-region break formation, but is critical for the processing of cleaved ends because both repair protein Ku80 recruitment and end synapse formation are blocked by APE1 deficiency. APE1 deficiency only partially impairs CSR, and we found that two other end-processing enzymes, meiotic recombination 11 homolog (MRE11) and carboxy-terminal binding protein (CtBP)-interacting protein (CtIP), are responsible for the remaining CSR activity in the absence of APE1. Activation-induced cytidine deaminase (AID) is essential for antibody diversification, namely somatic hypermutation (SHM) and class switch recombination (CSR). The deficiency of apurinic/apyrimidinic endonuclease 1 (Ape1) in CH12F3-2A B cells reduces CSR to ∼20% of wild-type cells, whereas the effect of APE1 loss on SHM has not been examined. Here we show that, although APE1’s endonuclease activity is important for CSR, it is dispensable for SHM as well as IgH/c-myc translocation. Importantly, APE1 deficiency did not show any defect in AID-induced S-region break formation, but blocked both the recruitment of repair protein Ku80 to the S region and the synapse formation between Sμ and Sα. Knockdown of end-processing factors such as meiotic recombination 11 homolog (MRE11) and carboxy-terminal binding protein (CtBP)-interacting protein (CtIP) further reduced the remaining CSR in Ape1-null CH12F3-2A cells. Together, our results show that APE1 is dispensable for SHM and AID-induced DNA breaks and may function as a DNA end-processing enzyme to facilitate the joining of broken ends during CSR.


PLOS ONE | 2013

In vivo analysis of Aicda gene regulation: a critical balance between upstream enhancers and intronic silencers governs appropriate expression.

Le Thi Huong; Maki Kobayashi; Mikiyo Nakata; Go Shioi; Hitoshi Miyachi; Tasuku Honjo; Hitoshi Nagaoka

The Aicda gene encodes activation-induced cytidine deaminase (AID). Aicda is strongly transcribed in activated B cells to diversify immunoglobulin genes, but expressed at low levels in various other cells in response to physiological or pathological stimuli. AID’s mutagenic nature has been shown to be involved in tumor development. Here, we used a transgenic strategy with bacterial artificial chromosomes (BACs) to examine the in vivo functions of Aicda regulatory elements, which cluster in two regions: in the first intron (region 2), and approximately 8-kb upstream of the transcription start site (region 4). Deleting either of these regions completely abolished the expression of Aicda-BAC reporters, demonstrating these elements’ critical roles. Furthermore, we found that selectively deleting two C/EBP-binding sites in region 4 inactivated the enhancer activity of the region despite the presence of intact NF-κB-, STAT6- and Smad-binding sites. On the other hand, selectively deleting E2F- and c-Myb-binding sites in region 2 increased the frequency of germinal-center B cells in which the Aicda promoter was active, indicating that E2F and c-Myb act as silencers in vivo. Interestingly, the silencer deletion did not cause ectopic activation of the Aicda promoter, indicating that Aicda activation requires enhancer-specific stimulation. In summary, precise regulation of the Aicda promoter appears to depend on a coordinated balance of activities between enhancer and silencer elements.

Collaboration


Dive into the Maki Kobayashi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Somayeh Sabouri

La Jolla Institute for Allergy and Immunology

View shared research outputs
Researchain Logo
Decentralizing Knowledge