Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maki Tokumoto is active.

Publication


Featured researches published by Maki Tokumoto.


Journal of Toxicological Sciences | 2015

Involvement of ubiquitin-coding genes in cadmium-induced protein ubiquitination in human proximal tubular cells

Jin-Yong Lee; Maki Tokumoto; Yasuyuki Fujiwara; Masahiko Satoh

Cadmium (Cd) is a toxic heavy metal with a long half-life in humans. It causes disorders of various tissue systems, including the kidney, and is associated with protein aggregation. Our previous study demonstrated Cd-induced suppression of the UBE2D gene family, one of the ubiquitin-conjugating enzyme families. However, the precise role of ubiquitin-coding genes in Cd toxicity remains to be understood. In this study, we investigated the effect of Cd on expression of the ubiquitin-coding genes UBB, UBC, UBA80, and UBA52 in HK-2 human proximal tubular cells. Prior to the appearance of Cd toxicity, the UBB, UBC, and UBA80 expression levels increased following Cd treatment. Knockdown of UBB by siRNA transfection significantly decreased Cd cytotoxicity. Notably, Cd induces ubiquitinated protein levels in HK-2 cells, and knockdown of UBB blocked this process. These results suggest that UBB is involved in Cd-induced increase of protein ubiquitination, and that accumulation of ubiquitinated proteins through increased UBB expression may contribute to Cd toxicity in HK-2 cells.


Toxicological research | 2016

Different Regulation of p53 Expression by Cadmium Exposure in Kidney, Liver, Intestine, Vasculature, and Brain Astrocytes

Jin-Yong Lee; Maki Tokumoto; Yuta Hattori; Yasuyuki Fujiwara; Akinori Shimada; Masahiko Satoh

Chronic exposure to cadmium (Cd) is known to adversely affect renal function. Our previous studies indicated that Cd induces p53-dependent apoptosis by inhibiting gene expression of the ubiquitin-conjugating enzyme (Ube) 2d family in both human and rat proximal tubular cells. In this study, the effects of Cd on protein expression of p53 and apoptotic signals in the kidney and liver of mice exposed to Cd for 12 months were examined, as well as the effects of Cd on p53 protein levels and gene expression of the Ube2d family in various cell lines. Results showed that in the kidney of mice exposed to 300 ppm Cd for 12 months, there was overaccumulation of p53 proteins in addition to the induction of apoptosis, which was triggered specifically in the proximal tubules. Interestingly, the site of apoptosis was the same as that of p53 accumulation in the proximal tubules. In the liver of mice chronically exposed to Cd, gene expression of the Ube2d family tended to be slightly decreased, together with slight apoptosis without the accumulation of p53 protein. In rat small intestine epithelial (IEC-6) cells, Cd decreased not only the p53 protein level but also gene expression of Ube2d1, Ube2d2 and Ube2d4. In human brain microvascular endothelial cells (HBMECs), Cd did not suppress gene expression of the Ube2d family, but increased the p53 protein level. In human brain astrocytes (HBASTs), Cd only increased gene expression of UBE2D3. These results suggest that Cd-induced apoptosis through p53 protein is associated with renal toxicity but not hepatic toxicity, and the modification of p53 protein by Cd may vary depending on cell type.


Scientific Reports | 2016

Accumulation of p53 via down-regulation of UBE2D family genes is a critical pathway for cadmium-induced renal toxicity.

Jin-Yong Lee; Maki Tokumoto; Yasuyuki Fujiwara; Tatsuya Hasegawa; Yoshiyuki Seko; Akinori Shimada; Masahiko Satoh

Chronic cadmium (Cd) exposure can induce renal toxicity. In Cd renal toxicity, p53 is thought to be involved. Our previous studies showed that Cd down-regulated gene expression of the UBE2D (ubiquitin-conjugating enzyme E2D) family members. Here, we aimed to define the association between UBE2D family members and p53-dependent apoptosis in human proximal tubular cells (HK-2 cells) treated with Cd. Cd increased intracellular p53 protein levels and decreased UBE2D2 and UBE2D4 gene expression via inhibition of YY1 and FOXF1 transcription factor activities. Double knockdown of UBE2D2 and UBE2D4 caused an increase in p53 protein levels, and knockdown of p53 attenuated not only Cd-induced apoptosis, but also Cd-induced apoptosis-related gene expression (BAX and PUMA). Additionally, the mice exposed to Cd for 6 months resulted in increased levels of p53 and induction of apoptosis in proximal tubular cells. These findings suggest that down-regulation of UBE2D family genes followed by accumulation of p53 in proximal tubular cells is an important mechanism for Cd-induced renal toxicity.


Journal of Toxicological Sciences | 2018

Glutathione has a more important role than metallothionein-I/II against inorganic mercury-induced acute renal toxicity

Maki Tokumoto; Jin-Yong Lee; Akinori Shimada; Chiharu Tohyama; Masahiko Satoh

Inorganic mercury is a harmful heavy metal that causes severe kidney damage. Glutathione (GSH), a tripeptide comprising L-glutamic acid, glycine and L-cysteine, and metallothionein (MT), a cysteine-rich and metal-binding protein, are biologically important protective factors for renal toxicity by inorganic mercury. However, the relationship between GSH and MT for the prevention of renal toxicity by inorganic mercury is unknown. We examined the sensitivity of the mice depleted in GSH by treatment with L-Buthionine-SR-sulfoximine (L-BSO), and MT-I/II null mice genetically deleted for MT-I and MT-II, to inorganic mercury (HgCl2). Kidney damage was not induced in the wild-type mice treated with HgCl2 (30 µmol/kg). In the MT-I/II null mice, renal toxicity was induced by HgCl2 at a dose of 30 µmol/kg but not 1.0 µmol/kg. All GSH-depleted mice of both strains were dead following the injection of HgCl2 (30 µmol/kg). GSH-depleted wild-type mice treated with HgCl2 (1.0 µmol/kg) developed kidney damage similar to MT-I/II null mice treated with HgCl2 (30 µmol/kg). Moreover, renal toxicity induced by HgCl2 (1.0 µmol/kg) was more severe in GSH-depleted MT-I/II null mice compared with GSH-depleted wild-type mice. The present study found that GSH and MT-I/II play cooperatively an important role in the detoxification of severe kidney damage caused by inorganic mercury. In addition, GSH may act as a primary protective factor against inorganic mercury-induced acute renal toxicity, because GSH-depleted mice were more sensitive to inorganic mercury than MT-I/II null mice.


Journal of Toxicological Sciences | 2018

Effects of long-term cadmium exposure on urinary metabolite profiles in mice

Sailendra Nath Sarma; Ammar Saleem; Jin-Yong Lee; Maki Tokumoto; Gi-Wook Hwang; Hing Man Chan; Masahiko Satoh

Cadmium (Cd) is a common environmental pollutant with known toxic effects on the kidney. Urinary metabolomics is a promising approach to study mechanism by which Cd-induced nephrotoxicity. The aim of this study was to elucidate the mechanism of Cd toxicity and to develop specific biomarkers by identifying urinary metabolic changes after a long-term of Cd exposure and with the critical concentration of Cd in the kidney. Urine samples were collected from wild-type 129/Sv mice after 67 weeks of 300 ppm Cd exposure and analyzed by ultra performance liquid chromatography connected with quadrupole time of flight mass spectrometer (UPLC-QTOF-MS) based metabolomics approach. A total of 40 most differentiated metabolites (9 down-regulated and 31 up-regulated) between the control and Cd-exposed group were identified. The majority of the regulated metabolites are amino acids (glutamine, L-aspartic acid, phenylalanine, tryptophan, and D-proline) indicating that amino acid metabolism pathways are affected by long-term exposure of Cd. However, there are also some nucleotides (guanosine, guanosine monophosphate, cyclic AMP, uridine), amino acid derivatives (homoserine, N-acetyl-L-aspartate, N-acetylglutamine, acetyl-phenylalanine, carboxymethyllysine), and peptides. Results of pathway analysis showed that the arginine and proline metabolism, purine metabolism, alanine, aspartate and glutamate metabolism, and aminoacyl-tRNA biosynthesis were affected compared to the control. This study demonstrates that metabolomics is useful to elucidate the metabolic responses and biological effects induced by Cd-exposure.


Scientific Reports | 2017

Identification of ARNT-regulated BIRC3 as the target factor in cadmium renal toxicity

Jin-Yong Lee; Maki Tokumoto; Gi-Wook Hwang; Moo-Yeol Lee; Masahiko Satoh

Cadmium (Cd) is an environmental contaminant that exhibits renal toxicity. The target transcription factors involved in Cd renal toxicity are still unknown. In this study, we demonstrated that Cd decreased the activity of the ARNT transcription factor, and knockdown of ARNT significantly decreased the viability of human proximal tubular HK-2 cells. Microarray analysis in ARNT knockdown cells revealed a decrease in the expression of a number of genes, including a known apoptosis inhibitor, BIRC3, whose gene and protein expression level was also decreased by Cd treatment. Although the BIRC family consists of 8 members, Cd suppressed only BIRC3 gene expression. BIRC3 is known to suppress apoptosis through the inhibition effect on caspase-3. Knockdown of BIRC3 by siRNA as well as Cd treatment increased the level of active caspase-3. Moreover, knockdown of BIRC3 not only triggered cell toxicity and apoptosis but also strengthened Cd toxicity in HK-2 cells. Meanwhile, the activation of caspase-3 by suppression of BIRC3 gene expression was mostly specific to Cd and to proximal tubular cells. These results suggest that Cd induces apoptosis through the inhibition of ARNT-regulated BIRC3 in human proximal tubular cells.


Toxics | 2018

Effect of Metallothionein-III on Mercury-Induced Chemokine Gene Expression

Jin-Yong Lee; Maki Tokumoto; Gi-Wook Hwang; Min-Seok Kim; Tsutomu Takahashi; Akira Naganuma; Minoru Yoshida; Masahiko Satoh

Mercury compounds are known to cause central nervous system disorders; however the detailed molecular mechanisms of their actions remain unclear. Methylmercury increases the expression of several chemokine genes, specifically in the brain, while metallothionein-III (MT-III) has a protective role against various brain diseases. In this study, we investigated the involvement of MT-III in chemokine gene expression changes in response to methylmercury and mercury vapor in the cerebrum and cerebellum of wild-type mice and MT-III null mice. No difference in mercury concentration was observed between the wild-type mice and MT-III null mice in any brain tissue examined. The expression of Ccl3 in the cerebrum and of Cxcl10 in the cerebellum was increased by methylmercury in the MT-III null but not the wild-type mice. The expression of Ccl7 in the cerebellum was increased by mercury vapor in the MT-III null mice but not the wild-type mice. However, the expression of Ccl12 and Cxcl12 was increased in the cerebrum by methylmercury only in the wild-type mice and the expression of Ccl3 in the cerebellum was increased by mercury vapor only in the wild-type mice. These results indicate that MT-III does not affect mercury accumulation in the brain, but that it affects the expression of some chemokine genes in response to mercury compounds.


Journal of Toxicological Sciences | 2018

Effect of gestational cadmium exposure on fetal growth, polyubiquitinated protein and monoubiqutin levels in the fetal liver of mice

Hisaka Kurita; Tatsuya Hasegawa; Yoshiyuki Seko; Hisamitsu Nagase; Maki Tokumoto; Jin-Yong Lee; Masahiko Satoh

Cadmium (Cd) is an environmental pollutant present in contaminated water, food and soil. Cd adversely affects fetal development. We exposed pregnant mice to daily oral doses of 5 and 10 mg/kg Cd and examined fetal growth. It was demonstrated that the exposure to Cd (10 mg/kg) during gestation caused fetal growth retardation (FGR). Investigation of the ubiquitin-proteasome system in fetal livers of mice exposed to gestational Cd revealed increased polyubiquitinated protein accumulation, contrasting with decreased levels of monoubiquitin protein. Moreover, the expression level of Ubc (encoding polyubiquitin C protein) was significantly decreased in 5 and 10 mg/kg Cd-treated groups in comparison with the control group. Therefore, we propose that decrease of monoubiquitin level and accumulation of polyubiquitinated protein in the fetal liver may be important factors in Cd-induced FGR.


Biological & Pharmaceutical Bulletin | 2012

Cadmium Renal Toxicity via Apoptotic Pathways.

Yasuyuki Fujiwara; Jin-Yong Lee; Maki Tokumoto; Masahiko Satoh


Journal of Toxicological Sciences | 2011

Cadmium toxicity is caused by accumulation of p53 through the down-regulation of Ube2d family genes in vitro and in vivo

Maki Tokumoto; Yasuyuki Fujiwara; Akinori Shimada; Tatsuya Hasegawa; Yoshiyuki Seko; Hisamitsu Nagase; Masahiko Satoh

Collaboration


Dive into the Maki Tokumoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jin-Yong Lee

Aichi Gakuin University

View shared research outputs
Top Co-Authors

Avatar

Yasuyuki Fujiwara

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hisamitsu Nagase

Gifu Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge