Makoto Hirayama
Hiroshima University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Makoto Hirayama.
Journal of Biological Chemistry | 2011
Yuichiro Sato; Makoto Hirayama; Kinjiro Morimoto; Naoki Yamamoto; Satomi Okuyama; Kanji Hori
The complete amino acid sequence of a lectin from the green alga Boodlea coacta (BCA), which was determined by a combination of Edman degradation of its peptide fragments and cDNA cloning, revealed the following: 1) B. coacta used a noncanonical genetic code (where TAA and TAG codons encode glutamine rather than a translation termination), and 2) BCA consisted of three internal tandem-repeated domains, each of which contains the sequence motif similar to the carbohydrate-binding site of Galanthus nivalis agglutinin-related lectins. Carbohydrate binding specificity of BCA was examined by a centrifugal ultrafiltration-HPLC assay using 42 pyridylaminated oligosaccharides. BCA bound to high mannose-type N-glycans but not to the complex-type, hybrid-type core structure of N-glycans or oligosaccharides from glycolipids. This lectin had exclusive specificity for α1–2-linked mannose at the nonreducing terminus. The binding activity was enhanced as the number of terminal α1–2-linked mannose substitutions increased. Mannobiose, mannotriose, and mannopentaose were incapable of binding to BCA. Thus, BCA preferentially recognized the nonreducing terminal α1–2-mannose cluster as a primary target. As predicted from carbohydrate-binding propensity, this lectin inhibited the HIV-1 entry into the host cells at a half-maximal effective concentration of 8.2 nm. A high association constant (3.71 × 108 m−1) of BCA with the HIV envelope glycoprotein gp120 was demonstrated by surface plasmon resonance analysis. Moreover, BCA showed the potent anti-influenza activity by directly binding to viral envelope hemagglutinin against various strains, including a clinical isolate of pandemic H1N1-2009 virus, revealing its potential as an antiviral reagent.
Biochemical and Biophysical Research Communications | 2011
Yuichiro Sato; Kinjiro Morimoto; Makoto Hirayama; Kanji Hori
Abstract The carbohydrate binding profile of the red algal lectin KAA-2 from Kappaphycus alvarezii was evaluated by a centrifugal ultrafiltration–HPLC method using pyridylaminated oligosaccharides. KAA-2 bound exclusively to high mannose type N-glycans, but not to other glycans such as complex type, hybrid type, or the pentasaccharide core of N-glycans. This lectin exhibited a preference for an exposed α1–3 Man on a D2 arm in a similar manner to Eucheuma serra agglutinin (ESA-2), which shows various biological activities, such as anti-HIV and anti-carcinogenic activity. We tested the anti-influenza virus activity of KAA-2 against various strains including the recent pandemic H1N1-2009 influenza virus. KAA-2 inhibited infection of various influenza strains with EC50s of low nanomolar levels. Immunofluorescence microscopy using an anti-influenza antibody demonstrated that the antiviral activity of KAA-2 was exerted by interference with virus entry into host cells. This mechanism was further confirmed by the evidence of direct binding of KAA-2 to a viral envelope protein, hemagglutinin (HA), using an ELISA assay. These results indicate that this lectin would be useful as a novel antiviral reagent for the prevention of infection.
Marine Drugs | 2015
Yuichiro Sato; Kinjiro Morimoto; Takanori Kubo; Takemasa Sakaguchi; Akira Nishizono; Makoto Hirayama; Kanji Hori
Lectin sensitivity of the recent pandemic influenza A virus (H1N1-2009) was screened for 12 lectins with various carbohydrate specificity by a neutral red dye uptake assay with MDCK cells. Among them, a high mannose (HM)-binding anti-HIV lectin, ESA-2 from the red alga Eucheuma serra, showed the highest inhibition against infection with an EC50 of 12.4 nM. Moreover, ESA-2 exhibited a wide range of antiviral spectrum against various influenza strains with EC50s of pico molar to low nanomolar levels. Besides ESA-2, HM-binding plant lectin ConA, fucose-binding lectins such as fungal AOL from Aspergillus oryzae and AAL from Aleuria aurantia were active against H1N1-2009, but the potency of inhibition was of less magnitude compared with ESA-2. Direct interaction between ESA-2 and a viral envelope glycoprotein, hemagglutinin (HA), was demonstrated by ELISA assay. This interaction was effectively suppressed by glycoproteins bearing HM-glycans, indicating that ESA-2 binds to the HA of influenza virus through HM-glycans. Upon treatment with ESA-2, no viral antigens were detected in the host cells, indicating that ESA-2 inhibited the initial steps of virus entry into the cells. ESA-2 would thus be useful as a novel microbicide to prevent penetration of viruses such as HIV and influenza viruses to the host cells.
Bioscience, Biotechnology, and Biochemistry | 2012
Danar Praseptiangga; Makoto Hirayama; Kanji Hori
A novel lectin (CBA) was isolated from the green alga, Codium barbatum, by conventional chromatographic methods. The hemagglutination-inhibition profile with sugars and glycoproteins indicated that CBA had preferential affinity for complex type N-glycans but not for monosaccharides, unlike the other known Codium lectins specific for N-acetylgalactosamine. CBA consisted of an SS-linked homodimer of a 9257-Da polypeptide containing seven cysteine residues, all of which were involved in disulfide linkages. The cDNA of the CBA subunit coded a polypeptide (105 amino acids) including the signal peptide of 17 residues. The calculated molecular mass from the deduced sequence was 9705 Da, implying that the four C-terminal amino acids of the CBA proprotein subunit were post-translationally truncated to afford the mature subunit (84 amino acids). No significantly similar sequences were found during an in silico search, indicating CBA to be a novel protein. CBA is the first Codium lectin whose primary structure has been elucidated.
Methods of Molecular Biology | 2014
Kanji Hori; Makoto Hirayama
The centrifugal ultrafiltration-HPLC method is a simple and rapid method for analyzing the binding interaction between lectins and sugars (oligosaccharides). In this method, a lectin is mixed with a fluorescent-labeled oligosaccharide in buffer and the unbound oligosaccharide recovered by centrifugal ultrafiltration is isolated and quantified by high-performance liquid chromatography. The binding activity is defined as a ratio (percentage) of the amount of bound oligosaccharide to that added, where the former is obtained by subtracting the amount of unbound oligosaccharide from the latter. The oligosaccharide-binding specificity of a lectin can be determined by comparing the binding activities with a variety of fluorescent-labeled oligosaccharides. The association constant and the optimum pH and temperature of the binding interaction between lectins and fluorescent-labeled oligosaccharides can be easily analyzed by this method.
Marine Drugs | 2017
Jinmin Mu; Makoto Hirayama; Yuichiro Sato; Kinjiro Morimoto; Kanji Hori
We have isolated a novel lectin, named HRL40 from the green alga Halimeda renschii. In hemagglutination-inhibition test and oligosaccharide-binding experiment with 29 pyridylaminated oligosaccharides, HRL40 exhibited a strict binding specificity for high-mannose N-glycans having an exposed (α1-3) mannose residue in the D2 arm of branched mannosides, and did not have an affinity for monosaccharides and other oligosaccharides examined, including complex N-glycans, an N-glycan core pentasaccharide, and oligosaccharides from glycolipids. The carbohydrate binding profile of HRL40 resembled those of Type I high-mannose specific antiviral algal lectins, or the Oscillatoria agardhii agglutinin (OAA) family, which were previously isolated from red algae and a blue-green alga (cyanobacterium). HRL40 potently inhibited the infection of influenza virus (A/H3N2/Udorn/72) into NCI-H292 cells with half-maximal effective dose (ED50) of 2.45 nM through high-affinity binding to a viral envelope hemagglutinin (KD, 3.69 × 10−11 M). HRL40 consisted of two isolectins (HRL40-1 and HRL40-2), which could be separated by reverse-phase HPLC. Both isolectins had the same molecular weight of 46,564 Da and were a disulfide -linked tetrameric protein of a 11,641 Da polypeptide containing at least 13 half-cystines. Thus, HRL40, which is the first Type I high-mannose specific antiviral lectin from the green alga, had the same carbohydrate binding specificity as the OAA family, but a molecular structure distinct from the family.
Marine Biotechnology | 2016
Makoto Hirayama; Hiromi Shibata; Koji Imamura; Takemasa Sakaguchi; Kanji Hori
We previously reported that a high-mannose binding lectin KAA-2 from the red alga Kappaphycus alvarezii, which is an economically important species and widely cultivated as a source of carrageenans, had a potent anti-influenza virus activity. In this study, the full-length sequences of two KAA isoforms, KAA-1 and KAA-2, were elucidated by a combination of peptide mapping and complementary DNA (cDNA) cloning. They consisted of four internal tandemrepeated domains, which are conserved in high-mannose specific lectins from lower organisms, including a cyanobacterium Oscillatoria agardhii and a red alga Eucheuma serra. Using anEscherichia coli expression system, an active recombinant form of KAA-1 (His-tagged rKAA-1) was successfully generated in the yield of 115 mg per liter of culture. In a detailed oligosaccharide binding analysis by a centrifugal ultrafiltration-HPLC method with 27 pyridylaminated oligosaccharides, His-tagged rKAA-1 and rKAA-1 specifically bound to high-mannose N-glycans with an exposed α1-3 mannose in the D2 arm as the native lectin did. Predicted from oligosaccharide binding specificity, a surface plasmon resonance analysis revealed that the recombinants exhibit strong interaction with gp120, a heavily glycosylated envelope glycoprotein of HIV with high association constants (1.48− 1.61×10 M). Native KAAs and the recombinants inhibited the HIV-1 entry at IC50s of low nanomolar levels (7.3– 12.9 nM). Thus, the recombinant proteins would be useful as antiviral reagents targeting the viral surface glycoproteins with high-mannose N-glycans, and the cultivated alga K. alvarezii could also be a good source of not only carrageenans but also this functional lectin(s).
Journal of Applied Phycology | 2015
Le Dinh Hung; Makoto Hirayama; Bui Minh Ly; Kanji Hori
Marine Biotechnology | 2016
Makoto Hirayama; Hiromi Shibata; Koji Imamura; Takemasa Sakaguchi; Kanji Hori
Phytochemistry Letters | 2015
Le Dinh Hung; Makoto Hirayama; Bui Minh Ly; Kanji Hori