Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Makoto Ikenaga is active.

Publication


Featured researches published by Makoto Ikenaga.


Microbes and Environments | 2014

The growth of Steroidobacter agariperforans sp. nov., a novel agar-degrading bacterium isolated from soil, is enhanced by the diffusible metabolites produced by bacteria belonging to Rhizobiales.

Masao Sakai; Akifumi Hosoda; Kenjiro Ogura; Makoto Ikenaga

An agar-degrading bacterium was isolated from soil collected in a vegetable cropping field. The growth of this isolate was enhanced by supplying culture supernatants of bacteria belonging to the order Rhizobiales. Phylogenetic analysis based on 16S rRNA gene sequences indicated the novel bacterium, strain KA5–BT, belonged to the genus Steroidobacter in Gammaproteobacteria, but differed from its closest relative, Steroidobacter denitrificans FST, at the species level with 96.5% similarity. Strain KA5–BT was strictly aerobic, Gram-negative, non-motile, non-spore forming, and had a straight to slightly curved rod shape. Cytochrome oxidase and catalase activities were positive. The strain grew on media containing culture supernatants in a temperature range of 15–37°C and between pH 4.5 and 9.0, with optimal growth occurring at 30°C and pH 6.0–8.0. No growth occurred at 10 or 42°C or at NaCl concentrations more than 3% (w/v). The main cellular fatty acids were iso–C15:0, C16:1ω7c, and iso–C17:1ω9c. The main quinone was ubiquinone-8 and DNA G+C content was 62.9 mol%. In contrast, strain FST was motile, did not grow on the agar plate, and its dominant cellular fatty acids were C15:0 and C17:1ω8c. Based on its phylogenetic and phenotypic properties, strain KA5–BT (JCM 18477T = KCTC 32107T) represents a novel species in genus Steroidobacter, for which the name Steroidobacter agariperforans sp. nov. is proposed.


Microbes and Environments | 2014

Application of Locked Nucleic Acid (LNA) Oligonucleotide–PCR Clamping Technique to Selectively PCR Amplify the SSU rRNA Genes of Bacteria in Investigating the Plant-Associated Community Structures

Makoto Ikenaga; Masao Sakai

The simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is a major limitation in investigating the community structures of bacteria associated with plants because organelle SSU rRNA genes are easily amplified by PCR using primer sets that are specific to bacteria. To inhibit the amplification of organelle genes, the locked nucleic acid (LNA) oligonucleotide–PCR clamping technique was applied to selectively amplify bacterial SSU rRNA genes by PCR. LNA oligonucleotides, the sequences of which were complementary to mitochondria and plastid genes, were designed by overlapping a few bases with the annealing position of the bacterial primer and converting DNA bases into LNA bases specific to mitochondria and plastids at the shifted region from the 3′ end of the primer-binding position. PCR with LNA oligonucleotides selectively amplified the bacterial genes while inhibited that of organelle genes. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that conventional amplification without LNA oligonucleotides predominantly generated DGGE bands from mitochondria and plastid genes with few bacterial bands. In contrast, additional bacterial bands were detected in DGGE patterns, the amplicons of which were prepared using LNA oligonucleotides. These results indicated that the detection of bacterial genes had been screened by the excessive amplification of the organelle genes. Sequencing of the bands newly detected by using LNA oligonucleotides revealed that their similarity to the known isolated bacteria was low, suggesting the potential to detect novel bacteria. Thus, application of the LNA oligonucleotide–PCR clamping technique was considered effective for the selective amplification of bacterial genes from extracted DNA containing plant organelle genes.


Journal of Microbiological Methods | 2013

Application of peptide nucleic acid (PNA)-PCR clamping technique to investigate the community structures of rhizobacteria associated with plant roots.

Masao Sakai; Makoto Ikenaga

The contamination of plant organelle (mitochondria and plastid) genes in the DNA extraction step becomes a major drawback in investigating the community structures of bacteria associated with plant samples. This is because organelle small subunit ribosomal RNA (SSU rRNA) genes are easily amplified by polymerase chain reaction (PCR) with a set of universal primers for bacteria. To suppress the PCR amplification of the organelle SSU rRNA genes, a peptide nucleic acid (PNA)-PCR clamping technique was applied for selective amplification of bacterial SSU rRNA genes. The PNA oligomers, which had sequences that were complementary to mitochondria and plastid SSU rRNA genes, were designed to overlap the region in the 1492r primer-binding site. PCR with the PNA oligomers significantly suppressed the amplification of the organelle SSU rRNA genes from spinach and cucumber roots. Terminal restriction fragment length polymorphism (T-RFLP) analysis showed that the conventional amplification without PNA oligomers generated the predominant T-RFLP fragments derived from mitochondria and plastids, whereas there was little detection of the rhizobacterial fragments. In contrast, several other T-RFLP fragments derived from rhizobacteria were detected in the products amplified with PNA oligomers, thereby enabling us to differentiate the community structures in spinach and cucumber roots. Thus, application of PNA-PCR clamping was considered to be effective and is a useful technique to amplify the rhizobacterial SSU rRNA genes from selectively extracted DNA containing plant mitochondria and plastid genes.


International Journal of Systematic and Evolutionary Microbiology | 2015

Ammoniibacillus agariperforans gen. nov., sp. nov., a thermophilic, agar-degrading bacterium isolated from compost

Masao Sakai; Daigo Deguchi; Akifumi Hosoda; Tomohiro Kawauchi; Makoto Ikenaga

A thermophilic, agar-degrading bacterium, strain FAB2(T), was isolated from sewage sludge compost. According to phylogenetic analysis based on 16S rRNA gene sequences, strain FAB2(T) belonged to the family Paenibacillaceae within the phylum Firmicutes. However, FAB2(T) was different enough at the genus level from closely related species. The percentages of 16S rRNA gene sequence similarity with related organisms were 90.4 % for Thermobacillus xylanilyticus, 91.8 % for Paenibacillus barengoltzii, 89.4 % for Cohnella lupini, 90.1 % for Fontibacillus aquaticus, and 89.0 % for Saccharibacillus sacchari. Morphological and physiological analyses revealed that the strain was motile, rod-shaped, Gram-stain-positive, aerobic and able to form oval endospores in swollen sporangia. Ammonium was required as a nitrogen source while nitrate, nitrite, urea and glutamate were not utilized. Catalase and oxidase activities were weakly positive and positive, respectively. The bacterium grew in the temperature range of 50-65 °C and in media with pH 7.5 to 9.0. Optimal growth occurred at 60 °C and pH 8.0-8.6. Growth was inhibited at pH≤7.0 and NaCl concentrations ≥2.5 % (w/v). In chemotaxonomic characterization, MK-7 was identified as the dominant menaquinone. Major fatty acids were iso-C16 : 0 and C16 : 0. Dominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Phosphatidylcholine was present in a moderate amount. The diamino acid in the cell wall was meso-diaminopimelic acid. The G+C content of the genomic DNA was 49.5 mol% in a nucleic acid study. On the basis of genetic and phenotypic characteristics, strain FAB2(T) ( = NBRC 109510(T) = KCTC 33130(T)) showed characteristics suitable for classification as the type strain of a novel species of a new genus in the family Paenibacillaceae, for which the name Ammoniibacillus agariperforans gen. nov., sp. nov. is proposed.


Genome Announcements | 2016

Draft Genome Sequences of Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, the Pathogens of Potato Common Scab, Isolated in Japan

Tsuyoshi Tomihama; Yatsuka Nishi; Masao Sakai; Makoto Ikenaga; Takashi Okubo; Seishi Ikeda

ABSTRACT The draft genome sequences of the three pathogens of potato common scab, Streptomyces scabiei S58, Streptomyces turgidiscabies T45, and Streptomyces acidiscabies a10, isolated in Japan, are presented here. The genome size of each strain is >10 Mb, and the three pathogenic strains share genes located in a pathogenicity island previously described in other pathogenic Streptomyces species.


Frontiers in Microbiology | 2016

The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils

Xue Zhou; Dario Fornara; Makoto Ikenaga; Isao Akagi; Ruifu Zhang; Zhongjun Jia

Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations, such as significant changes in water availability.


Bioscience, Biotechnology, and Biochemistry | 2015

Development of LNA oligonucleotide–PCR clamping technique in investigating the community structures of plant-associated bacteria

Makoto Ikenaga; Masakazu Tabuchi; Takuya Oyama; Isao Akagi; Masao Sakai

Simultaneous extraction of plant organelle (mitochondria and plastid) genes during the DNA extraction step is major limitation in investigating the community structures of plant-associated bacteria. Although locked nucleic acid (LNA) oligonucleotides was designed to selectively amplify the bacterial small subunit rRNA genes by applying the PCR clamping technique, those for plastids were applicable only for particular plants, while those for mitochondria were available throughout most plants. To widen the applicable range, new LNA oligonucleotides specific for plastids were designed, and the efficacy was investigated. PCR without LNA oligonucleotides predominantly amplified the organelle genes, while bacterial genes were predominantly observed in having applied the LNA oligonucleotides. Denaturing gradient gel electrophoresis (DGGE) analysis displayed additional bacterial DGGE bands, the amplicons of which were prepared using the LNA oligonucleotides. Thus, new designed LNA oligonucleotides specific for plastids were effective and have widened the scope in investigating the community structures of plant-associated bacteria. Graphical abstract DGGE patterns of SSU rRNA genes derived from soybean and potato samples. Symbols “–” and “+” indicated the lanes generated without (0 μM) and with (4.0 μM) LNA oligonucleotides.


Microbes and Environments | 2016

Application of Locked Nucleic Acid (LNA) Primer and PCR Clamping by LNA Oligonucleotide to Enhance the Amplification of Internal Transcribed Spacer (ITS) Regions in Investigating the Community Structures of Plant–Associated Fungi

Makoto Ikenaga; Masakazu Tabuchi; Tomohiro Kawauchi; Masao Sakai

The simultaneous extraction of host plant DNA severely limits investigations of the community structures of plant–associated fungi due to the similar homologies of sequences in primer–annealing positions between fungi and host plants. Although fungal-specific primers have been designed, plant DNA continues to be excessively amplified by PCR, resulting in the underestimation of community structures. In order to overcome this limitation, locked nucleic acid (LNA) primers and PCR clamping by LNA oligonucleotides have been applied to enhance the amplification of fungal internal transcribed spacer (ITS) regions. LNA primers were designed by converting DNA into LNA, which is specific to fungi, at the forward primer side. LNA oligonucleotides, the sequences of which are complementary to the host plants, were designed by overlapping a few bases with the annealing position of the reverse primer. Plant-specific DNA was then converted into LNA at the shifted position from the 3′ end of the primer–binding position. PCR using the LNA technique enhanced the amplification of fungal ITS regions, whereas those of the host plants were more likely to be amplified without the LNA technique. A denaturing gradient gel electrophoresis (DGGE) analysis displayed patterns that reached an acceptable level for investigating the community structures of plant–associated fungi using the LNA technique. The sequences of the bands detected using the LNA technique were mostly affiliated with known isolates. However, some sequences showed low similarities, indicating the potential to identify novel fungi. Thus, the application of the LNA technique is considered effective for widening the scope of community analyses of plant–associated fungi.


Journal of Integrative Agriculture | 2016

Characterization of root-associated bacterial community structures in soybean and corn using locked nucleic acid (LNA) oligonucleotide-PCR clamping and 454 pyrosequencing

Yu Zhenhua; Yu Jiang; Makoto Ikenaga; Masao Sakai; Xiao-bing Liu; Guang-hua Wang

Abstract The community structure and diversity of root-associated bacteria have been tentatively investigated using polymerase chain reaction (PCR) amplification methods in several studies. However, the homology between small submit ribosomal (SSU) rRNA genes of plant plastids and mitochondria and that of bacteria have hindered in these studies. To address this issue, in this paper, we adopted the methods of locked nucleic acid (LNA) oligonucleotide-PCR clamping with 454 pyrosequencing to analysis the root-associated bacterial community compositions in soybean and corn. Results showed that plant chloroplast and mitochondria genes were effectively inhibited from PCR amplification in the root samples with LNA oligonucleotides (LNA (+)), and PCR amplicons with LNA (+) had higher bacterial operational taxonomic unit (OTU) numbers and ACE, Chao1, and Shannon indices, as well as a lower Simpson index than the corresponding samples without LNA oligonucleotides (LNA (–)). Those findings suggested that the methods of this study provide a much more detail description of root-associated bacterial communities. In the soybean LNA (+) sample, Pseudomonas, Bradyrhizobium and Flavobacterium were the three most abundant genera, whereas the top two predominant genera in corn LNA (+) samples were Streptomyces and Niastella. The presence and absence of major genera varied between soybean and corn, suggesting the root-associated bacterial communities differed between two crops. The rare phylotypes and uncultured root-associated bacterial members detected in this study inferred that the root-associated bacterial communities are highly complex and information on their taxonomic affiliates potentially gives the clues for selecting the optimal medium and method to isolate the novel bacteria for further functional analysis.


Microbial Ecology | 2014

Changes in Sediment Bacterial Community in Response to Long-Term Nutrient Enrichment in a Subtropical Seagrass-Dominated Estuary

Rafael Guevara; Makoto Ikenaga; Amanda L. Dean; Cristina Pisani; Joseph N. Boyer

Collaboration


Dive into the Makoto Ikenaga's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Jiang

Northeast Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yu Zhenhua

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge