Makoto Kamei
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Makoto Kamei.
Nature | 2006
Makoto Kamei; W. Brian Saunders; Kayla J. Bayless; Louis Dye; George E. Davis; Brant M. Weinstein
The formation of epithelial tubes is crucial for the proper development of many different tissues and organs, and occurs by means of a variety of different mechanisms. Morphogenesis of seamless, properly patterned endothelial tubes is essential for the development of a functional vertebrate circulatory system, but the mechanism of vascular lumenization in vivo remains unclear. Evidence dating back more than 100 years has hinted at an important function for endothelial vacuoles in lumen formation. More than 25 years ago, in some of the first endothelial cell culture experiments in vitro, Folkman and Haudenschild described “longitudinal vacuoles” that “appeared to be extruded and connected from one cell to the next”, observations confirmed and extended by later studies in vitro showing that intracellular vacuoles arise from integrin-dependent and cdc42/Rac1-dependent pinocytic events downstream of integrin–extracellular-matrix signalling interactions. Despite compelling data supporting a model for the assembly of endothelial tubes in vitro through the formation and fusion of vacuoles, conclusive evidence in vivo has been lacking, primarily because of difficulties associated with imaging the dynamics of subcellular endothelial vacuoles deep within living animals. Here we use high-resolution time-lapse two-photon imaging of transgenic zebrafish to examine how endothelial tubes assemble in vivo, comparing our results with time-lapse imaging of human endothelial-cell tube formation in three-dimensional collagen matrices in vitro. Our results provide strong support for a model in which the formation and intracellular and intercellular fusion of endothelial vacuoles drives vascular lumen formation.
Cell and Tissue Research | 2003
Jesús Torres-Vázquez; Makoto Kamei; Brant M. Weinstein
Abstract The vertebrate vascular system is essential for the delivery and exchange of gases, hormones, metabolic wastes and immunity factors. These essential functions are carried out in large part by two types of anatomically distinct blood vessels, namely arteries and veins. Previously, circulatory dynamics were thought to play a major role in establishing this dichotomy, but recently it has become clear that arterial and venous endothelial cells are molecularly distinct even before the output of the first embryonic heartbeat, thus revealing the existence of genetic programs coordinating arterial-venous differentiation. Here we review some of the molecular mechanisms involved in this process.
Proceedings of the National Academy of Sciences of the United States of America | 2007
David A. Buchner; Fengyun Su; Jennifer S. Yamaoka; Makoto Kamei; Jordan A. Shavit; Linda K. Barthel; Beth McGee; Julio D. Amigo; Seongcheol Kim; Andrew Hanosh; Pudur Jagadeeswaran; Daniel Goldman; Nathan D. Lawson; Pamela A. Raymond; Brant M. Weinstein; David Ginsburg; Susan E. Lyons
The zebrafish is a powerful model for studying vascular development, demonstrating remarkable conservation of this process with mammals. Here, we identify a zebrafish mutant, redhead (rhdmi149), that exhibits embryonic CNS hemorrhage with intact gross development of the vasculature and normal hemostatic function. We show that the rhd phenotype is caused by a hypomorphic mutation in p21-activated kinase 2a (pak2a). PAK2 is a kinase that acts downstream of the Rho-family GTPases CDC42 and RAC and has been implicated in angiogenesis, regulation of cytoskeletal structure, and endothelial cell migration and contractility among other functions. Correction of the Pak2a-deficient phenotype by Pak2a overexpression depends on kinase activity, implicating Pak2 signaling in the maintenance of vascular integrity. Rescue by an endothelial-specific transgene further suggests that the hemorrhage seen in Pak2a deficiency is the result of an autonomous endothelial cell defect. Reduced expression of another PAK2 ortholog, pak2b, in Pak2a-deficient embryos results in a more severe hemorrhagic phenotype, consistent with partially overlapping functions for these two orthologs. These data provide in vivo evidence for a critical function of Pak2 in vascular integrity and demonstrate a severe disease phenotype resulting from loss of Pak2 function.
Methods in Cell Biology | 2004
Makoto Kamei; Sumio Isogai; Brant M. Weinstein
Understanding on the mechanisms of vascular branching morphogenesis has become a subject of enormous scientific and clinical interest. Zebrafish, which have small, accessible, transparent embryos and larvae, provides a unique living animal model to facilitating high-resolution imaging on ubiquitous and deep localization of vessels within embryo development and also in adult tissues. In this chapter, we have summarized various methods for vessel imaging in zebrafish, including in situ hybridization for vascular-specific genes, resin injection- or dye injection-based vessel visualization, and alkaline phosphatase staining. We also described detail protocols for live imaging of vessels by microangiography or using various transgenic zebrafish lines.
Zebrafish | 2005
Makoto Kamei; Brant M. Weinstein
A variety of different transgenic zebrafish lines have been generated expressing green fluorescent protein (GFP) or other fluorescent proteins in different organs and tissues, permitting dynamic visualization of development of these organs and tissues in living animals via time-lapse imaging. Although methods have been devised for short- to medium-term time-lapse imaging of transgenic zebrafish, these methods are not suitable for longer term imaging because of poor control over temperature, evaporation, and anoxia. We describe a new imaging chamber that provides continuously circulating flow of warm, oxygenated aqueous media. We show that the chamber can be used for multiphoton time-lapse imaging of developing blood vessels in the trunk of Fli1-EGFP transgenic zebrafish for 5 days without developmental delay, loss of viability, or evident reduction in strength of circulatory flow. This imaging chamber provides an important new tool for long-term dynamic imaging of transgenic zebrafish.
Developmental Dynamics | 2006
Kenna M. Shaw; Daniel Castranova; Van N. Pham; Makoto Kamei; Kameha R. Kidd; Brigid Lo; Jesus Torres-Vasquez; Alexander Ruby; Brant M. Weinstein
We identified four mutants in two distinct loci exhibiting similar trunk vascular patterning defects in an F3 genetic screen for zebrafish vascular mutants. Initial vasculogenesis is not affected in these mutants, with proper specification and differentiation of endothelial cells. However, all four display severe defects in the growth and patterning of angiogenic vessels in the trunk, with ectopic branching and disoriented migration of intersegmental vessels. The four mutants are allelic to previously characterized mutants at the fused‐somites (fss) and beamter (bea) loci, and they exhibit comparable defects in trunk somite boundary formation. The fss locus has been shown to correspond to tbx24; we show here that bea mutants are defective in the zebrafish dlC gene. Somitic expression of known vascular guidance factors efnb2a, sema3a1, and sema3a2 is aberrantly patterned in fss and bea mutants, suggesting that the vascular phenotype is due to loss of proper guidance cues provided by these factors. Developmental Dynamics 235:1753–1760, 2006. Published 2006 Wiley‐Liss, Inc.
Blood | 2012
Weijun Pan; Van N. Pham; Amber N. Stratman; Daniel Castranova; Makoto Kamei; Kameha R. Kidd; Brigid Lo; Kenna M. Shaw; Jesús Torres-Vázquez; Constantinos M. Mikelis; Gutkind Js; George E. Davis; Brant M. Weinstein
Understanding the mechanisms that regulate angiogenesis and translating these into effective therapies are of enormous scientific and clinical interests. In this report, we demonstrate the central role of CDP-diacylglycerol synthetase (CDS) in the regulation of VEGFA signaling and angiogenesis. CDS activity maintains phosphoinositide 4,5 bisphosphate (PIP2) availability through resynthesis of phosphoinositides, whereas VEGFA, mainly through phospholipase Cγ1, consumes PIP2 for signal transduction. Loss of CDS2, 1 of 2 vertebrate CDS enzymes, results in vascular-specific defects in zebrafish in vivo and failure of VEGFA-induced angiogenesis in endothelial cells in vitro. Absence of CDS2 also results in reduced arterial differentiation and reduced angiogenic signaling. CDS2 deficit-caused phenotypes can be successfully rescued by artificial elevation of PIP2 levels, and excess PIP2 or increased CDS2 activity can promote excess angiogenesis. These results suggest that availability of CDS-controlled resynthesis of phosphoinositides is essential for angiogenesis.
Development | 2016
Florian Ulrich; Jorge Carretero-Ortega; Javier Menéndez; Carlos Narvaez; Belinda Sun; Eva Lancaster; Valerie Pershad; Sean Trzaska; Evelyn Véliz; Makoto Kamei; Andrew Prendergast; Kameha R. Kidd; Kenna M. Shaw; Daniel Castranova; Van N. Pham; Brigid Lo; Benjamin L. Martin; David W. Raible; Brant M. Weinstein; Jesús Torres-Vázquez
The cerebral vasculature provides the massive blood supply that the brain needs to grow and survive. By acquiring distinctive cellular and molecular characteristics it becomes the blood-brain barrier (BBB), a selectively permeable and protective interface between the brain and the peripheral circulation that maintains the extracellular milieu permissive for neuronal activity. Accordingly, there is great interest in uncovering the mechanisms that modulate the formation and differentiation of the brain vasculature. By performing a forward genetic screen in zebrafish we isolated no food for thought (nft y72), a recessive late-lethal mutant that lacks most of the intracerebral central arteries (CtAs), but not other brain blood vessels. We found that the cerebral vascularization deficit of nft y72 mutants is caused by an inactivating lesion in reversion-inducing cysteine-rich protein with Kazal motifs [reck; also known as suppressor of tumorigenicity 15 protein (ST15)], which encodes a membrane-anchored tumor suppressor glycoprotein. Our findings highlight Reck as a novel and pivotal modulator of the canonical Wnt signaling pathway that acts in endothelial cells to enable intracerebral vascularization and proper expression of molecular markers associated with BBB formation. Additional studies with cultured endothelial cells suggest that, in other contexts, Reck impacts vascular biology via the vascular endothelial growth factor (VEGF) cascade. Together, our findings have broad implications for both vascular and cancer biology. Summary: A zebrafish screen identifies reck as a key modulator of Wnt signaling required in the brain endothelium for intracerebral vascularisation and proper expression of barriergenesis markers.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2016
Daniel Castranova; Andrew Davis; Brigid Lo; Mayumi F Miller; Paul J. Paukstelis; Matthew R. Swift; Van N. Pham; Jesús Torres-Vázquez; Kameha Bell; Kenna M. Shaw; Makoto Kamei; Brant M. Weinstein
Objective— Understanding the mechanisms regulating normal and pathological angiogenesis is of great scientific and clinical interest. In this report, we show that mutations in 2 different aminoacyl-transfer RNA synthetases, threonyl tRNA synthetase (tars y58 ) or isoleucyl tRNA synthetase (iars y68 ), lead to similar increased branching angiogenesis in developing zebrafish. Approach and Results— The unfolded protein response pathway is activated by aminoacyl-transfer RNA synthetase deficiencies, and we show that unfolded protein response genes atf4, atf6, and xbp1, as well as the key proangiogenic ligand vascular endothelial growth factor (vegfaa), are all upregulated in tars y58 and iars y68 mutants. Finally, we show that the protein kinase RNA-like endoplasmic reticulum kinase–activating transcription factor 4 arm of the unfolded protein response pathway is necessary for both the elevated vegfaa levels and increased angiogenesis observed in tars y58 mutants. Conclusions— Our results suggest that endoplasmic reticulum stress acts as a proangiogenic signal via unfolded protein response pathway–dependent upregulation of vegfaa.
Methods in Cell Biology | 2016
Hyun Min Jung; Sumio Isogai; Makoto Kamei; Daniel Castranova; Aniket V. Gore; Brant M. Weinstein
Blood vessels supply tissues and organs with oxygen, nutrients, cellular, and humoral factors, while lymphatic vessels regulate tissue fluid homeostasis, immune trafficking, and dietary fat absorption. Understanding the mechanisms of vascular morphogenesis has become a subject of intense clinical interest because of the close association of both types of vessels with pathogenesis of a broad spectrum of human diseases. The zebrafish provides a powerful animal model to study vascular morphogenesis because of their small, accessible, and transparent embryos. These unique features of zebrafish embryos permit sophisticated high-resolution live imaging of even deeply localized vessels during embryonic development and even in adult tissues. In this chapter, we summarize various methods for blood and lymphatic vessel imaging in zebrafish, including nonvital resin injection-based or dye injection-based vessel visualization, and alkaline phosphatase staining. We also provide protocols for vital imaging of vessels using microangiography or transgenic fluorescent reporter zebrafish lines.