Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Makoto Miyagishi is active.

Publication


Featured researches published by Makoto Miyagishi.


Nature | 2003

Cloning of adiponectin receptors that mediate antidiabetic metabolic effects

Toshimasa Yamauchi; Junji Kamon; Yusuke Ito; Atsushi Tsuchida; Takehiko Yokomizo; Shunbun Kita; Takuya Sugiyama; Makoto Miyagishi; Kazuo Hara; Masaki Tsunoda; Koji Murakami; Toshiaki Ohteki; S. Uchida; Sato Takekawa; Hironori Waki; Nelson H. Tsuno; Yoichi Shibata; Yasuo Terauchi; Philippe Froguel; Kazuyuki Tobe; Shigeo Koyasu; Kazunari Taira; Toshio Kitamura; Takao Shimizu; Ryozo Nagai; Takashi Kadowaki

Corrigendum (2004)10.1038/nature03091Adiponectin (also known as 30-kDa adipocyte complement-related protein; Acrp30) is a hormone secreted by adipocytes that acts as an antidiabetic and anti-atherogenic adipokine. Levels of adiponectin in the blood are decreased under conditions of obesity, insulin resistance and type 2 diabetes. Administration of adiponectin causes glucose-lowering effects and ameliorates insulin resistance in mice. Conversely, adiponectin-deficient mice exhibit insulin resistance and diabetes. This insulin-sensitizing effect of adiponectin seems to be mediated by an increase in fatty-acid oxidation through activation of AMP kinase and PPAR-α. Here we report the cloning of complementary DNAs encoding adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) by expression cloning. AdipoR1 is abundantly expressed in skeletal muscle, whereas AdipoR2 is predominantly expressed in the liver. These two adiponectin receptors are predicted to contain seven transmembrane domains, but to be structurally and functionally distinct from G-protein-coupled receptors. Expression of AdipoR1/R2 or suppression of AdipoR1/R2 expression by small-interfering RNA supports our conclusion that they serve as receptors for globular and full-length adiponectin, and that they mediate increased AMP kinase and PPAR-α ligand activities, as well as fatty-acid oxidation and glucose uptake by adiponectin.


Nature | 2007

DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response

Akinori Takaoka; ZhiChao Wang; Myoung Kwon Choi; Hideyuki Yanai; Hideo Negishi; Tatsuma Ban; Yan Lu; Makoto Miyagishi; Tatsuhiko Kodama; Kenya Honda; Yusuke Ohba; Tadatsugu Taniguchi

Central to innate immunity is the sensing of pathogen-associated molecular patterns by cytosolic and membrane-associated receptors. In particular, DNA is a potent activator of immune responses during infection or tissue damage, and evidence indicates that, in addition to the membrane-associated Toll-like receptor 9, an unidentified cytosolic DNA sensor(s) can activate type I interferon (IFN) and other immune responses. Here we report on a candidate DNA sensor, previously named DLM-1 (also called Z-DNA binding protein 1 (ZBP1)), for which biological function had remained unknown; we now propose the alternative name DAI (DNA-dependent activator of IFN-regulatory factors). The artificial expression of otherwise IFN-inducible DAI (DLM-1/ZBP1) in mouse fibroblasts selectively enhances the DNA-mediated induction of type I IFN and other genes involved in innate immunity. On the other hand, RNA interference of messenger RNA for DAI (DLM-1/ZBP1) in cells inhibits this gene induction programme upon stimulation by DNA from various sources. Moreover, DAI (DLM-1/ZBP1) binds to double-stranded DNA and, by doing so, enhances its association with the IRF3 transcription factor and the TBK1 serine/threonine kinase. These observations underscore an integral role of DAI (DLM-1/ZBP1) in the DNA-mediated activation of innate immune responses, and may offer new insight into the signalling mechanisms underlying DNA-associated antimicrobial immunity and autoimmune disorders.


Journal of Immunology | 2005

Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity

Mitsutoshi Yoneyama; Mika Kikuchi; Kanae Matsumoto; Tadaatsu Imaizumi; Makoto Miyagishi; Kazunari Taira; Eileen Foy; Yueh Ming Loo; Michael Gale; Shizuo Akira; Shin Yonehara; Atsushi Kato; Takashi Fujita

The cellular protein retinoic acid-inducible gene I (RIG-I) senses intracellular viral infection and triggers a signal for innate antiviral responses including the production of type I IFN. RIG-I contains a domain that belongs to a DExD/H-box helicase family and exhibits an N-terminal caspase recruitment domain (CARD) homology. There are three genes encoding RIG-I-related proteins in human and mouse genomes. Melanoma differentiation associated gene 5 (MDA5), which consists of CARD and a helicase domain, functions as a positive regulator, similarly to RIG-I. Both proteins sense viral RNA with a helicase domain and transmit a signal downstream by CARD; thus, these proteins share overlapping functions. Another protein, LGP2, lacks the CARD homology and functions as a negative regulator by interfering with the recognition of viral RNA by RIG-I and MDA5. The nonstructural protein 3/4A protein of hepatitis C virus blocks the signaling by RIG-I and MDA5; however, the V protein of the Sendai virus selectively abrogates the MDA5 function. These results highlight ingenious mechanisms for initiating antiviral innate immune responses and the action of virus-encoded inhibitors.


Nature Biotechnology | 2002

U6 promoter-driven siRNAs with four uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells.

Makoto Miyagishi; Kazunari Taira

The first evidence for gene disruption by double-stranded RNA (dsRNA) came from careful analysis in Caenorhabditis elegans. This phenomenon, called RNA interference (RNAi), was observed subsequently in various organisms, including plants, nematodes, Drosophila, and protozoans. Very recently, it has been reported that in mammalian cells, 21- or 22-nucleotide (nt) RNAs with 2-nt 3′ overhangs (small inhibitory RNAs, siRNAs) exhibit an RNAi effect. This is because siRNAs are not recognized by the well-characterized host defense system against viral infections, involving dsRNA-dependent inhibition of protein synthesis. However, the current method for introducing synthetic siRNA into cells by lipofection restricts the range of applications of RNAi as a result of the low transfection efficiencies in some cell types and/or short-term persistence of silencing effects. Here, we report a vector-based siRNA expression system that can induce RNAi in mammalian cells. This technical advance for silencing gene expression not only facilitates a wide range of functional analysis of mammalian genes but might also allow therapeutic applications by means of vector-mediated RNAi.


EMBO Reports | 2003

Inhibition of intracellular hepatitis C virus replication by synthetic and vector‐derived small interfering RNAs

Takanori Yokota; Naoya Sakamoto; Nobuyuki Enomoto; Yoko Tanabe; Makoto Miyagishi; Shinya Maekawa; L i Yi; Masayuki Kurosaki; Kazunari Taira; Mamoru Watanabe; Hidehiro Mizusawa

Small interfering RNAs (siRNAs) efficiently inhibit gene expression by RNA interference. Here, we report efficient inhibition, by both synthetic and vector‐derived siRNAs, of hepatitis C virus (HCV) replication, as well as viral protein synthesis, using an HCV replicon system. The siRNAs were designed to target the 5′ untranslated region (5′ UTR) of the HCV genome, which has an internal ribosomal entry site for the translation of the entire viral polyprotein. Moreover, the 5′ UTR is the most conserved region in the HCV genome, making it an ideal target for siRNAs. Importantly, we have identified an effective site in the 5′ UTR at which ∼80% suppression of HCV replication was achieved with concentrations of siRNA as low as 2.5 nM. Furthermore, DNA‐based vectors expressing siRNA against HCV were also effective, which might allow the efficient delivery of RNAi into hepatocytes in vivo using viral vectors. Our results support the feasibility of using siRNA‐based gene therapy to inhibit HCV replication, which may prove to be valuable in the treatment of hepatitis C.


Antisense & Nucleic Acid Drug Development | 2003

Comparison of the Suppressive Effects of Antisense Oligonucleotides and siRNAs Directed Against the Same Targets in Mammalian Cells

Makoto Miyagishi; Mariko Hayashi; Kazunari Taira

RNA interference appears to be a potentially powerful tool for studies of genes of unknown function. However, differences in efficacy at different target sites remain problematic when small interfering RNA (siRNA) is used as an effector. Similar problems are associated with attempts at gene inactivation using antisense oligonucleotides (ODNs) and ribozymes. We performed a comparative analysis of the suppressive effects of three knockdown methods, namely, methods based on RNA interference (RNAi), antisense ODNs, and ribozymes, using a luciferase reporter system. Dose-response experiments revealed that the IC50 value for the siRNA was about 100-fold lower than that of the antisense ODN. Our results provide useful information about the positional effects in RNAi, which might help to improve the design of effective siRNAs.


Cancer Research | 2005

Blockade of the Stromal Cell–Derived Factor-1/CXCR4 Axis Attenuates In vivo Tumor Growth by Inhibiting Angiogenesis in a Vascular Endothelial Growth Factor–Independent Manner

Bayasi Guleng; Keisuke Tateishi; Miki Ohta; Fumihiko Kanai; Amarsanaa Jazag; Hideaki Ijichi; Yasuo Tanaka; Miwa Washida; Keita Morikane; Yasushi Fukushima; Takao Yamori; Takashi Tsuruo; Takao Kawabe; Makoto Miyagishi; Kazunari Taira; Masataka Sata; Masao Omata

The interaction between the chemokine receptor CXCR4 and its specific ligand, stromal cell-derived factor-1 (SDF-1/CXCL12), mediates several cellular functions. In cancer, SDF-1-positive or CXCR4-positive cells of various lineages are detected within tumor tissues. Recent intensive research has indicated the possibility that blocking CXCR4 could reduce the metastatic potential of cancer cells. Here, we show that the inhibition of the SDF-1/CXCR4 axis decreases the growth of s.c. gastrointestinal tumors through the suppression of tumor neoangiogenesis. The neutralization of CXCR4 suppressed the growth in vivo of tumors derived from mouse Colon38 and PancO2 cells, whereas it did not affect the growth of Colon38 and PancO2 cells in vitro. This attenuation of tumor growth was found to be independent of the expression of CXCR4 by the cancer cells themselves, because CXCR4 knocked-down Colon38 cells grew similarly to control cells. Furthermore, CD31-positive tumor capillaries were reduced to 45% (P < 0.001) and intratumor blood flows were decreased to 65% (P < 0.01) by blockade of CXCR4. The vascular endothelial growth factor (VEGF) concentration in the tumors was not affected by the neutralization of CXCR4. Taken together with the detection of CXCR4-positive endothelial cells in the tumor tissues, the findings suggest that the antiangiogenic effects of the blockade of CXCR4 are related to a reduction of the establishment of tumor endothelium independently of VEGF inhibition. Our data indicate that the SDF-1/CXCR4 pathway might be a general target for anticancer strategies and that blocking this system could be cooperatively effective in combination with other antiangiogenic therapies, such as blockade of VEGF.


Oncogene | 2004

Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference.

Hidetoshi Sumimoto; Makoto Miyagishi; Hiroyuki Miyoshi; Shizuko Yamagata; Ayako Shimizu; Kazunari Taira; Yutaka Kawakami

Oncogenic mutations of molecules involved in the mitogen-activated protein kinase (MAPK) pathways provide signals mediating both tumor growth and invasion in various cancers including melanomas. BRAF somatic mutations, found in 66% of melanomas, have NIH3T3 transforming ability with the elevated kinase activity in vitro. We attempted to mediate RNA interference (RNAi) with HIV lentiviral vectors specific for either wild type or the most frequently mutated form of BRAF (V599E) in 10 melanoma cell lines, and found that RNAi inhibited the growth of most melanoma cell lines in vitro as well as in vivo, which was accompanied by decrease of both BRAF protein and ERK phosphorylation. Interestingly, the mutated BRAF (V599E)-specific siRNA inhibited the growth and MAPK activity of only melanoma cell lines with this mutation. Furthermore, BRAF RNAi inhibited matrigel invasion of melanoma cells accompanied with a decrease of matrix metalloproteinase activity and β1 integrin expression. These results clarify that the mutated BRAF (V599E) is essentially involved in malignant phenotype of melanoma cells through the MAPK activation and is an attractive molecular target for melanoma treatment. The lentivirus-mediated RNAi specific for oncogenic mutations may be a powerful technique for gene therapy of cancer.


Journal of Gene Medicine | 2004

Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells

Makoto Miyagishi; Hidetoshi Sumimoto; Hiroyuki Miyoshi; Yutaka Kawakami; Kazunari Taira

RNA interference (RNAi) is a phenomenon in which expression of an individual gene can be specifically silenced by introducing a double‐stranded RNA, one complementary to the gene, into cells. This phenomenon can be observed in mammalian cells when small interfering RNAs (siRNAs) are used, and is receiving attention as the most powerful tool for reverse genetics in the post genome era. Several groups have developed vector‐based siRNA‐expression systems that can induce RNAi in living cells.


Journal of Immunology | 2005

A20 Is a Negative Regulator of IFN Regulatory Factor 3 Signaling

Tatsuya Saitoh; Masahiro Yamamoto; Makoto Miyagishi; Kazunari Taira; Makoto Nakanishi; Takashi Fujita; Shizuo Akira; Naoki Yamamoto; Shoji Yamaoka

IFN regulatory factor 3 (IRF-3) is a critical transcription factor that regulates an establishment of innate immune status following detection of viral pathogens. Recent studies have revealed that two IκB kinase (IKK)-like kinases, NF-κB-activating kinase/Traf family member-associated NF-κB activator-binding kinase 1 and IKK-i/IKKε, are responsible for activation of IRF-3, but the regulatory mechanism of the IRF-3 signaling pathway has not been fully understood. In this study, we report that IRF-3 activation is suppressed by A20, which was initially identified as an inhibitor of apoptosis and inducibly expressed by dsRNA. A20 physically interacts with NF-κB-activating kinase/Traf family member-associated NF-κB activator-binding kinase 1 and IKK-i/IKKε, and inhibits dimerization of IRF-3 following engagement of TLR3 by dsRNA or Newcastle disease virus infection, leading to suppression of the IFN stimulation response element- and IFN-β promoter-dependent transcription. Importantly, knocking down of A20 expression by RNA interference results in enhanced IRF-3-dependent transcription triggered by the stimulation of TLR3 or virus infection. Our study thus demonstrates that A20 is a candidate negative regulator of the signaling cascade to IRF-3 activation in the innate antiviral response.

Collaboration


Dive into the Makoto Miyagishi's collaboration.

Top Co-Authors

Avatar

Kazunari Taira

Sapporo Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yasuomi Takagi

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge