Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Makoto Negoro is active.

Publication


Featured researches published by Makoto Negoro.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Room temperature hyperpolarization of nuclear spins in bulk

Kenichiro Tateishi; Makoto Negoro; Shinsuke Nishida; Akinori Kagawa; Yasushi Morita; Masahiro Kitagawa

Significance Nuclear spins are only slightly aligned even in the strong magnetic fields of superconducting magnets because the magnetic energy of nuclear spin is much smaller than thermal energy. This is the major reason for the low sensitivity of NMR spectroscopy. Using electron spins in thermal equilibrium, which have 660 times higher magnetic energy, the sensitivity can be enhanced by at most this factor through a method called dynamic nuclear polarization. Utilizing photo-excited nonthermalized electrons instead, we demonstrate an enhancement factor of 250,000 at room temperature, which can be applied to a wide range of fields including NMR, MRI, and physics. Dynamic nuclear polarization (DNP), a means of transferring spin polarization from electrons to nuclei, can enhance the nuclear spin polarization (hence the NMR sensitivity) in bulk materials at most 660 times for 1H spins, using electron spins in thermal equilibrium as polarizing agents. By using electron spins in photo-excited triplet states instead, DNP can overcome the above limit. We demonstrate a 1H spin polarization of 34%, which gives an enhancement factor of 250,000 in 0.40 T, while maintaining a bulk sample (∼0.6 mg, ∼0.7 × 0.7 × 1 mm3) containing >1019 1H spins at room temperature. Room temperature hyperpolarization achieved with DNP using photo-excited triplet electrons has potentials to be applied to a wide range of fields, including NMR spectroscopy and MRI as well as fundamental physics.


Journal of Magnetic Resonance | 2009

Active compensation of rf-pulse transients.

Kazuyuki Takeda; Yutaka Tabuchi; Makoto Negoro; Masahiro Kitagawa

A new approach to compensate rf-pulse transients is proposed. Based on the idea of the response theory of a linear system, a formula is derived to obtain the required excitation voltage profile back from the intended target rf-pulse shape. The validity of the formula is experimentally confirmed by monitoring the rf-field created inside the sample coil with a pickup coil. Since this approach realizes accurate rf-pulse shapes without reducing the Q-factor of the tank circuit of the probe, it can be used not only to suppress the transient tail of the rf-pulse, but also as a general concept for accurate rf-pulsing.


Angewandte Chemie | 2013

Dynamic Nuclear Polarization with Photoexcited Triplet Electrons in a Glassy Matrix

Kenichiro Tateishi; Makoto Negoro; Akinori Kagawa; Masahiro Kitagawa

In this decade, dynamic nuclear polarization (DNP) using equilibrated electron spin has attracted considerable attention in the fields of NMR spectroscopy and MRI as a method to enhance sensitivity. The intensity of a signal from nuclear spins is proportional to the spin polarization. DNP is a means of transferring spin polarization from electrons to nuclei, and the equilibrated polarization of electron spins is 660 times larger than that of H spins. Developing special peripheral equipment, we are able to combine hyperpolarization at cryogenic temperatures around liquid helium temperature with high-resolution NMR spectroscopy or MRI. For such applications, the sample preparation method which materials of interest are codoped into a glassy matrix together with free radicals is one of the most important factors in terms of versatility. On the other hand, by using single crystal of organic molecules, we have developed a polarized solid-state target with DNP using photoexcited triplet electron spin (triplet-DNP) of pentacene. The polarization of such non-equilibrated electron spins is more than 70% independent of temperature and magnetic field. Using this method, we can overcome the upper limit (660) of the polarization enhancement factor achieved by conventional DNP. Herein, we report the first demonstration of triplet-DNP in a glassy matrix for application in NMR spectroscopy and MRI. We applied two types of host molecules that have higher glass transition temperature than conventionally used glasses. One is a non-polar molecule, oterphenyl (OTP). The other is a polar molecule, benzophenone (BZP). Using partially deuterated OTP and BZP as host materials, we obtained 1.5% and 0.7% H spin polarization under 0.4 T at 120 K, respectively (Fig. 1). The enhancement factor for OTP and BZP was 4,250 and 1,900, respectively. We have also succeeded in polarizing third molecules, 2, 3, 4trifluorobenzoic acid and 5-fluorouracil, codoped into a glassy matrix with polarizing agent (Fig. 2). F spin in the thrid molecules were polarized using the field cycling method. The use of photoexcited triplet electrons is a promising method to extend the limitation of DNP to higher temperatures. If hyperpolarization can be achieved above liquid nitrogen temperature, the peripheral equipment and the experiments for spectroscopy will


Physical Review X | 2014

Measurement-Free Topological Protection Using Dissipative Feedback

Keisuke Fujii; Makoto Negoro; Nobuyuki Imoto; Masahiro Kitagawa

Protecting quantum information from decoherence due to environmental noise is vital for fault-tolerant quantum computation. To this end, standard quantum error correction employs parallel projective measurements of individual particles, which makes the system extremely complicated. Here we propose measurement-free topological protection in two dimension without any selective addressing of individual particles. We make use of engineered dissipative dynamics and feedback operations to reduce the entropy generated by decoherence in such a way that quantum information is topologically protected. We calculate an error threshold, below which quantum information is protected, without assuming selective addressing, projective measurements, nor instantaneous classical processing. All physical operations are local and translationally invariant, and no parallel projective measurement is required, which implies high scalability. Furthermore, since the engineered dissipative dynamics we utilized has been well studied in quantum simulation, the proposed scheme can be a promising route progressing from quantum simulation to fault-tolerant quantum information processing.


Review of Scientific Instruments | 2009

Magnetic-field cycling instrumentation for dynamic nuclear polarization-nuclear magnetic resonance using photoexcited triplets

Akinori Kagawa; Makoto Negoro; Kazuyuki Takeda; Masahiro Kitagawa

To advance static solid-state NMR with hyperpolarized nuclear spins, a system has been developed enabling dynamic nuclear polarization (DNP) using electron spins in the photoexcited triplet state with X-band microwave apparatus, followed by static solid-state nuclear magnetic resonance (NMR) experiments using the polarized nuclear-spin system with a goniometer. In order to perform the DNP and NMR procedures in different magnetic fields, the DNP system and the NMR system are spatially separated, between which the sample can be shuttled while its orientation is controlled in a reproducible fashion. We demonstrate that the system developed in this work is operational for solid-state NMR with hyperpolarized nuclear-spin systems in static organic materials, and also discuss the application of our system.


Physical Review Letters | 2011

Scalable spin amplification with a gain over a hundred.

Makoto Negoro; Kenichiro Tateishi; Akinori Kagawa; Masahiro Kitagawa

We propose a scalable and practical implementation of spin amplification which does not require individual addressing nor a specially tailored spin network. We have demonstrated a gain of 140 in a solid-state nuclear spin system of which the spin polarization has been increased to 0.12 using dynamic nuclear polarization with photoexcited triplet electron spins. Spin amplification scalable to a higher gain opens the door to the single spin measurement for a readout of quantum computers as well as practical applications of nuclear magnetic resonance spectroscopy to infinitesimal samples which have been concealed by thermal noise.


Journal of Chemical Physics | 2010

H2-decoupling-accelerated H1 spin diffusion in dynamic nuclear polarization with photoexcited triplet electrons

Makoto Negoro; K. Nakayama; Kenichiro Tateishi; Akinori Kagawa; Kazuyuki Takeda; Masahiro Kitagawa

In dynamic nuclear polarization (DNP) experiments applied to organic solids for creating nonequilibrium, high (1)H spin polarization, an efficient buildup of (1)H polarization is attained by partially deuterating the material of interest with an appropriate (1)H concentration. In such a dilute (1)H spin system, it is shown that the (1)H spin diffusion rate and thereby the buildup efficiency of (1)H polarization can further be enhanced by continually applying radiofrequency irradiation for deuterium decoupling during the DNP process. As experimentally confirmed in this work, the electron spin polarization of the photoexcited triplet state is mainly transferred only to those (1)H spins, which are in the vicinity of the electron spins, and (1)H spin diffusion transports the localized (1)H polarization over the whole sample volume. The (1)H spin diffusion coefficients are estimated from DNP repetition interval dependence of the initial buildup rate of (1)H polarization, and the result indicates that the spin diffusion coefficient is enhanced by a factor of 2 compared to that without (2)H decoupling.


Journal of Magnetic Resonance | 2013

Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

Yung Szen Yap; Hiroshi Yamamoto; Yutaka Tabuchi; Makoto Negoro; Akinori Kagawa; Masahiro Kitagawa

This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonators efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwaves magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.


Journal of the Physical Society of Japan | 2013

Hyperpolarization of Thin Films with Dynamic Nuclear Polarization Using Photoexcited Triplet Electrons

Kenichiro Tateishi; Makoto Negoro; Akinori Kagawa; T. Uesaka; Masahiro Kitagawa

With dynamic nuclear polarization using the photoexcited triplet electron spin (triplet-DNP) of pentacene, nuclear spins can be hyperpolarized even in a low magnetic field at room temperature. Several demonstrations have been performed using bulk crystals. Hyperpolarization in a thin film with triplet-DNP enables new applications, such as general NMR spectroscopy and the polarized target of unstable nuclei. In this work, we succeeded in polarizing 1H spins in a thin film fabricated by the cell method. We obtained a 1H spin polarization of 12.9% using a 7-μm-thick film of \(p\)-terphenyl doped with pentacene in 0.4 T at room temperature. We also obtained a 1H spin polarization of 3.9% in 0.4 T at 150 K using a 60-μm-thick film of trans-stilbene doped with pentacene, whose single crystal cannot be made easily by conventional methods.


Review of Scientific Instruments | 2015

A Ku band pulsed electron paramagnetic resonance spectrometer using an arbitrary waveform generator for quantum control experiments at millikelvin temperatures

Yung Szen Yap; Yutaka Tabuchi; Makoto Negoro; Akinori Kagawa; Masahiro Kitagawa

We present a 17 GHz (Ku band) arbitrary waveform pulsed electron paramagnetic resonance spectrometer for experiments down to millikelvin temperatures. The spectrometer is located at room temperature, while the resonator is placed either in a room temperature magnet or inside a cryogen-free dilution refrigerator; the operating temperature range of the dilution unit is from ca. 10 mK to 8 K. This combination provides the opportunity to perform quantum control experiments on electron spins in the pure-state regime. At 0.6 T, spin echo experiments were carried out using γ-irradiated quartz glass from 1 K to 12.3 mK. With decreasing temperatures, we observed an increase in spin echo signal intensities due to increasing spin polarizations, in accordance with theoretical predictions. Through experimental data fitting, thermal spin polarization at 100 mK was estimated to be at least 99%, which was almost pure state. Next, to demonstrate the ability to create arbitrary waveform pulses, we generate a shaped pulse by superposing three Gaussian pulses of different frequencies. The resulting pulse was able to selectively and coherently excite three different spin packets simultaneously-a useful ability for analyzing multi-spin system and for controlling a multi-qubit quantum computer. By applying this pulse to the inhomogeneously broadened sample, we obtain three well-resolved excitations at 8 K, 1 K, and 14 mK.

Collaboration


Dive into the Makoto Negoro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yung Szen Yap

Universiti Teknologi Malaysia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge