Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Makoto Okazawa is active.

Publication


Featured researches published by Makoto Okazawa.


Cell | 2009

Abnormal Behavior in a Chromosome- Engineered Mouse Model for Human 15q11-13 Duplication Seen in Autism

Jin Nakatani; Kota Tamada; Fumiyuki Hatanaka; Satoko Ise; Hisashi Ohta; Kiyoshi Inoue; Shozo Tomonaga; Yasuhito Watanabe; Yeun Jun Chung; Ruby Banerjee; Kazuya Iwamoto; Tadafumi Kato; Makoto Okazawa; Kenta Yamauchi; Koichi Tanda; Keizo Takao; Tsuyoshi Miyakawa; Allan Bradley; Toru Takumi

Summary Substantial evidence suggests that chromosomal abnormalities contribute to the risk of autism. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We have modeled this genetic change in mice by using chromosome engineering to generate a 6.3 Mb duplication of the conserved linkage group on mouse chromosome 7. Mice with a paternal duplication display poor social interaction, behavioral inflexibility, abnormal ultrasonic vocalizations, and correlates of anxiety. An increased MBII52 snoRNA within the duplicated region, affecting the serotonin 2c receptor (5-HT2cR), correlates with altered intracellular Ca2+ responses elicited by a 5-HT2cR agonist in neurons of mice with a paternal duplication. This chromosome-engineered mouse model for autism seems to replicate various aspects of human autistic phenotypes and validates the relevance of the human chromosome abnormality. This model will facilitate forward genetics of developmental brain disorders and serve as an invaluable tool for therapeutic development.


The Journal of Physiology | 2006

Membrane potential-regulated Ca2+ signalling in development and maturation of mammalian cerebellar granule cells

Shigetada Nakanishi; Makoto Okazawa

In many developing neuronal cell types, the resting membrane potential is relatively depolarized, then gradually hyperpolarizes during the early postnatal period. The regulatory roles of membrane potential changes in neuronal development and maturation have been extensively studied in developing cerebellar granule cells, using primary culture under depolarizing and non‐depolarizing conditions in combination with in vivo analysis. Depolarization enhances calcium entry via voltage‐sensitive Ca2+ channels (VSCCs) and activates Ca2+–calmodulin‐dependent protein kinase (CaMK) and calcineurin phophatase (CaN). The activation of CaN induces many genes encoding extracellular and intracellular signalling molecules implicated in granule cell development. The inactivation of CaN in turn up‐regulates many other genes characteristic of mature granule cells, including NR2C NMDA receptor and GABAAα1 and α6 receptors. The induction of NR2C also requires CaMK‐up‐regulated brain‐derived neurotrophic factor (BDNF), indicating a convergence of signalling mechanism of the CaMK and CaN cascades. The inactivation of CaN maintains the phosphorylated and sumoylated form of a transcriptional myocyte enhances factor 2A (MEF2A) regulator. This form of MEF2A acts as a transcriptional repressor and is essential for the dendritic morphogenesis of differentiated granule cells. Collectively, the membrane potential change and the resulting Ca2+ signalling play a pivotal role in development and maturation of neuronal cells.


Neuroreport | 2000

l-Menthol-induced [Ca2+]i increase and impulses in cultured sensory neurons.

Makoto Okazawa; Tomoya Terauchi; Takuma Shiraki; Kiyoshi Matsumura; Shigeo Kobayashi

We investigated the effects of l-menthol on cultured dorsal root ganglion (DRG) cells, instead of free nerve endings of sensory fibers. Using Fura-2 microfluorimetry, we identified a few DRG neurons that showed an increase in intracellular free Ca2+ concentration ([Ca2+]i in response to l-menthol. They made up only 10% of the neurons activated by a high K+ solution. l-Menthol induced the [Ca2+]i increase in a dose-dependent manner, with an EC50 of 37.9 μM and a Hill coefficient of 0.97. A related compound, cyclohexanol, had no effect. When extracellular Ca2+ was removed, l-menthol did not induce the [Ca2+]i increase. Whole-cell current-clamp recordings revealed that l-menthol induced depolarization (13.2 mV, receptor potential) leading to impulses. We conclude that l-menthol induced the impulses through activation of menthol receptors in a small subset of the cultured sensory neurons.


The Journal of Neuroscience | 2009

Role of Calcineurin Signaling in Membrane Potential-Regulated Maturation of Cerebellar Granule Cells

Makoto Okazawa; Haruka Abe; Michiko Katsukawa; Kouichirou Iijima; Tatsuto Kiwada; Shigetada Nakanishi

At the early postnatal period, cerebellar granule cells proliferate, differentiate, migrate, and finally form refined synaptic connections with mossy fibers. During this period, the resting membrane potential of immature granule cells is relatively depolarized, but it becomes hyperpolarized in mature cells. This investigation was conducted to examine the role of this alteration in membrane potential and its downstream signaling mechanism in development and maturation of granule cells. Experiments were designed to precisely characterize the ontogenic processes of developing granule cells by combining organotypic cerebellar cultures with the specific expression of EGFP (enhanced green fluorescent protein) in granule cells by use of DNA transfection. Multiple approaches using morphology, electrophysiology, and immunohistochemistry demonstrated that granule cells developed and matured at the physiological KCl concentration in organotypic cultures in a temporally regulated manner. We addressed how persistent membrane depolarization influences the developmental and maturation processes of granule cells by depolarizing organotypic cultures with high KCl. Depolarization preserved the developmental processes of granule cells up to the stage of formation of immature dendrites but prevented the maturation processes for synaptic formation by granule cells. Importantly, this blockade of the terminal maturation of granule cells was reversed by inactivation of calcineurin with its specific inhibitor. This investigation has demonstrated that alteration of the membrane potential and its downstream calcineurin signaling play a pivotal role in triggering the maturation program for the synaptic organization of postnatally developing granule cells.


Proceedings of the National Academy of Sciences of the United States of America | 2011

The Etv1/Er81 transcription factor orchestrates activity-dependent gene regulation in the terminal maturation program of cerebellar granule cells

Haruka Abe; Makoto Okazawa; Shigetada Nakanishi

In the postnatal period, cerebellar granule cells express a set of the maturation gene battery in an activity-dependent manner and establish synaptic function in the cerebellar circuitry. Using primary cultures combined with specific inhibition of signaling cascades, the present investigation revealed that the expression of the maturation genes, including the NMDA glutamate receptor NR2C and GABAA receptor GABAARα6 genes, is controlled by strikingly unified signaling mechanisms that operate sequentially through stimulation of AMPA and NMDA receptors, Na+ channels [voltage-gated Na channel type II (Nav1.2)], and voltage-dependent Ca2+ channels. This signaling then induces the Ets variant gene 1 (Etv1/Er81) transcription factor of the ETS family in an activity-dependent manner. Consistent with the culture study, the ChIP assay indicated that Etv1 up-regulates the maturation genes in a developmentally regulated manner. This activation, as revealed by the luciferase assay, occurrs by interacting with the Etv1-interacting motifs present in the promoter region. Importantly, in vivo knockdown of Etv1 by DNA electroporation in the developing cerebellum prevents the up-regulation of the maturation genes but has no effects on preceding developmental processes occurring in the granule cells. Etv1 thus orchestrates the activity-dependent gene regulation in the terminal maturation program and specifies the identity of cerebellar granule cells.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Gene regulation via excitation and BDNF is mediated by induction and phosphorylation of the Etv1 transcription factor in cerebellar granule cells

Haruka Abe; Makoto Okazawa; Shigetada Nakanishi

In maturing postnatal cerebellar granule cells, the Etv1/Er81 transcription factor is induced by sequential activity-dependent mechanisms through stimulation of AMPA and NMDA receptors, voltage-dependent Nav1.2 Na+ channels, and voltage-dependent Ca2+ channels. Etv1 then up-regulates a battery of maturation genes involved in the cerebellar circuitry. In this process, BDNF is also induced and participates in the up-regulation of these maturation genes. Using cultures of granule cells, we addressed how the activity-dependent and BDNF signaling mechanisms converge on the regulation of the representative NR2C NMDA receptor and Tiam1 maturation genes. BDNF up-regulated both the NR2C and Tiam1 genes via the TrkB-Erk cascade and this up-regulation was blocked not only by inhibition of the activity-dependent signaling mechanisms but also by suppression of Etv1 expression with Etv1 siRNA. Importantly, Etv1 was selectively phosphorylated by Erk1/2 in the BDNF signaling cascade, and the inhibition of this phosphorylation abrogated the BDNF-induced up-regulation of the NR2C and Tiam1 genes. The luciferase reporter assays in combination with mutations of MEK and Etv1 indicated that the Erk-mediated, phosphorylated Etv1 interacted with the Ets motifs of the NR2C promoter sequence and that phosphorylation at both serine 94 and a cluster of threonines and a serine (Thr139, Thr143, and Ser146) of Etv1 was indispensable for the BDNF-mediated activation of the NR2C promoter activity. This study demonstrates that the NR2C and Tiam1 maturation genes are synergistically controlled by the activity-dependent induction of Etv1 and its phosphorylation by the BDNF signaling cascade.


The Journal of Neuroscience | 2010

Protein Kinase G Dynamically Modulates TASK1-Mediated Leak K+ Currents in Cholinergic Neurons of the Basal Forebrain

Hiroki Toyoda; Mitsuru Saito; Makoto Okazawa; Keiko Hirao; Hajime Sato; Haruka Abe; Kenji Takada; Kazuo Funabiki; Masahiko Takada; Takeshi Kaneko; Youngnam Kang

Leak K+ conductance generated by TASK1/3 channels is crucial for neuronal excitability. However, endogenous modulators activating TASK channels in neurons remained unknown. We previously reported that in the presumed cholinergic neurons of the basal forebrain (BF), activation of NO-cGMP-PKG (protein kinase G) pathway enhanced the TASK1-like leak K+ current (I-Kleak). As 8-Br-cGMP enhanced the I-Kleak mainly at pH 7.3 as if changing the I-Kleak from TASK1-like to TASK3-like current, such an enhancement of the I-Kleak would result either from an enhancement of hidden TASK3 component or from an acidic shift in the pH sensitivity profile of TASK1 component. In view of the report that protonation of TASK channel decreases its open probability, the present study was designed to examine whether the activation of PKG increases the conductance of TASK1 channels by reducing their binding affinity for H+, i.e., by increasing Kd for protonation, or not. We here demonstrate that PKG activation and inhibition respectively upregulate and downregulate TASK1 channels heterologously expressed in PKG-loaded HEK293 cells at physiological pH, by causing shifts in the Kd in the acidic and basic directions, respectively. Such PKG modulations of TASK1 channels were largely abolished by mutating pH sensor H98. In the BF neurons that were identified to express ChAT and TASK1 channels, similar dynamic modulations of TASK1-like pH sensitivity of I-Kleak were caused by PKG. It is strongly suggested that PKG activation and inhibition dynamically modulate TASK1 currents at physiological pH by bidirectionally changing Kd values for protonation of the extracellular pH sensors of TASK1 channels in cholinergic BF neurons.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Dual regulation of NR2B and NR2C expression by NMDA receptor activation in mouse cerebellar granule cell cultures

Kouichirou Iijima; Haruka Abe; Makoto Okazawa; Koki Moriyoshi; Shigetada Nakanishi

In the developing cerebellum, switching of the subunit composition of NMDA receptors occurs in granule cells from NR2B-containing receptors to NR2C-containing ones. We investigated the mechanisms underlying switching of NR2B and NR2C subunit composition in primary cultures of mouse granule cells at the physiological KCl concentration (5 mM). Granule cells extensively extended their neuritic processes 48 h after having been cultured in serum-free medium containing 5 mM KCl. Consistent with this morphological change, NR2B mRNA and NR2C mRNA were down- and up-regulated, respectively, in the granule cells. This dual regulation of the two mRNAs was abrogated by blocking excitation of granule cells with TTX. This neuronal activity–dependent regulation of NR2B and NR2C mRNAs was abolished by the addition of selective antagonists of AMPA receptors and NMDA receptors. Furthermore, the dual regulation of NR2B and NR2C mRNAs in TTX-treated cells was restored by the addition of NMDA in the presence of the AMPA receptor antagonist, but not by that of AMPA in the presence of the NMDA receptor antagonist. Importantly, the NMDA receptor activation drove the NR2B/NR2C switching of NMDA receptors in the cell-surface membrane of granule cells. This investigation demonstrates that stimulation of NMDA receptors in conjunction with the AMPA receptor–mediated excitation of granule cells plays a key role in functional subunit switching of NMDA receptors in maturing granule cells at the physiological KCl concentration.


eNeuro | 2016

The Possible Role of TASK Channels in Rank-Ordered Recruitment of Motoneurons in the Dorsolateral Part of the Trigeminal Motor Nucleus

Keiko Okamoto; Norihito Emura; Hajime Sato; Yuki Fukatsu; Mitsuru Saito; Chie Tanaka; Yukako Morita; Kayo Nishimura; Eriko Kuramoto; Dong Xu Yin; Kazuharu Furutani; Makoto Okazawa; Yoshihisa Kurachi; Takeshi Kaneko; Yoshinobu Maeda; Takashi Yamashiro; Kenji Takada; Hiroki Toyoda; Youngnam Kang

Abstract Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K+ channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 μm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15–20 μm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN.


Biochemical and Biophysical Research Communications | 2016

The Etv1 transcription factor activity-dependently downregulates a set of genes controlling cell growth and differentiation in maturing cerebellar granule cells

Makoto Okazawa; Haruka Abe; Shigetada Nakanishi

In the early postnatal period, cerebellar granule cells exhibit an activity-dependent downregulation of a set of immaturation genes involved in cell growth and migration and are shifted to establishment of a mature network formation. Through the use of a granule cell culture and both pharmacological and RNA interference (siRNA) analyses, the present investigation revealed that the downregulation of these immaturation genes is controlled by strikingly unified signaling mechanisms that operate sequentially through the stimulation of AMPA and NMDA receptors, tetrodotoxin-sensitive Na(+) channels and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). This signaling cascade induces the Etv1 transcription factor, and knockdown of Etv1 by a siRNA technique prevented this activity-dependent downregulation of immaturation genes. Thus, taken into consideration the mechanism that controls the upregulation of maturation genes involved in synaptic formation, these results indicate that Etv1 orchestrates the activity-dependent regulation of both maturation and immaturation genes in developing granule cells and plays a key role in specifying the identity of mature granule cells in the cerebellum.

Collaboration


Dive into the Makoto Okazawa's collaboration.

Top Co-Authors

Avatar

Haruka Abe

Osaka Bioscience Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiyoshi Matsumura

Osaka Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Kouichirou Iijima

Osaka Bioscience Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge