Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malak Shoukry is active.

Publication


Featured researches published by Malak Shoukry.


Nature | 2009

ChIP-seq accurately predicts tissue-specific activity of enhancers

Axel Visel; Matthew J. Blow; Zirong Li; Tao Zhang; Jennifer A. Akiyama; Amy Holt; Ingrid Plajzer-Frick; Malak Shoukry; Crystal Wright; Feng Chen; Veena Afzal; Bing Ren; Edward M. Rubin; Len A. Pennacchio

A major yet unresolved quest in decoding the human genome is the identification of the regulatory sequences that control the spatial and temporal expression of genes. Distant-acting transcriptional enhancers are particularly challenging to uncover because they are scattered among the vast non-coding portion of the genome. Evolutionary sequence constraint can facilitate the discovery of enhancers, but fails to predict when and where they are active in vivo. Here we present the results of chromatin immunoprecipitation with the enhancer-associated protein p300 followed by massively parallel sequencing, and map several thousand in vivo binding sites of p300 in mouse embryonic forebrain, midbrain and limb tissue. We tested 86 of these sequences in a transgenic mouse assay, which in nearly all cases demonstrated reproducible enhancer activity in the tissues that were predicted by p300 binding. Our results indicate that in vivo mapping of p300 binding is a highly accurate means for identifying enhancers and their associated activities, and suggest that such data sets will be useful to study the role of tissue-specific enhancers in human biology and disease on a genome-wide scale.


Nature | 2006

In vivo enhancer analysis of human conserved non-coding sequences.

Len A. Pennacchio; Nadav Ahituv; Alan M. Moses; Shyam Prabhakar; Marcelo A. Nobrega; Malak Shoukry; Simon Minovitsky; Inna Dubchak; Amy Holt; Keith D. Lewis; Ingrid Plajzer-Frick; Jennifer A. Akiyama; Sarah De Val; Veena Afzal; Brian L. Black; Olivier Couronne; Michael B. Eisen; Axel Visel; Edward M. Rubin

Identifying the sequences that direct the spatial and temporal expression of genes and defining their function in vivo remains a significant challenge in the annotation of vertebrate genomes. One major obstacle is the lack of experimentally validated training sets. In this study, we made use of extreme evolutionary sequence conservation as a filter to identify putative gene regulatory elements, and characterized the in vivo enhancer activity of a large group of non-coding elements in the human genome that are conserved in human–pufferfish, Takifugu (Fugu) rubripes, or ultraconserved in human–mouse–rat. We tested 167 of these extremely conserved sequences in a transgenic mouse enhancer assay. Here we report that 45% of these sequences functioned reproducibly as tissue-specific enhancers of gene expression at embryonic day 11.5. While directing expression in a broad range of anatomical structures in the embryo, the majority of the 75 enhancers directed expression to various regions of the developing nervous system. We identified sequence signatures enriched in a subset of these elements that targeted forebrain expression, and used these features to rank all ∼3,100 non-coding elements in the human genome that are conserved between human and Fugu. The testing of the top predictions in transgenic mice resulted in a threefold enrichment for sequences with forebrain enhancer activity. These data dramatically expand the catalogue of human gene enhancers that have been characterized in vivo, and illustrate the utility of such training sets for a variety of biological applications, including decoding the regulatory vocabulary of the human genome.


Nature Genetics | 2010

ChIP-Seq identification of weakly conserved heart enhancers

Matthew J. Blow; David J. McCulley; Zirong Li; Tao Zhang; Jennifer A. Akiyama; Amy Holt; Ingrid Plajzer-Frick; Malak Shoukry; Crystal Wright; Feng Chen; Veena Afzal; James Bristow; Bing Ren; Brian L. Black; Edward M. Rubin; Axel Visel; Len A. Pennacchio

Accurate control of tissue-specific gene expression plays a pivotal role in heart development, but few cardiac transcriptional enhancers have thus far been identified. Extreme noncoding-sequence conservation has successfully predicted enhancers that are active in many tissues but has failed to identify substantial numbers of heart-specific enhancers. Here, we used ChIP-Seq with the enhancer-associated protein p300 from mouse embryonic day 11.5 heart tissue to identify over 3,000 candidate heart enhancers genome wide. Compared to enhancers active in othertissues we studied at this time point, most candidate heart enhancers were less deeply conserved in vertebrate evolution. Nevertheless, transgenic mouse assays of 130 candidate regions revealed that most function reproducibly as enhancers active in the heart, irrespective of their degree of evolutionary constraint. These results provide evidence for a large population of poorly conserved heart enhancers and suggest that the evolutionary conservation of embryonic enhancers can vary depending on tissue type.


Nature Genetics | 2008

Ultraconservation identifies a small subset of extremely constrained developmental enhancers

Axel Visel; Shyam Prabhakar; Jennifer A. Akiyama; Malak Shoukry; Keith D. Lewis; Amy Holt; Ingrid Plajzer-Frick; Veena Afzal; Edward M. Rubin; Len A. Pennacchio

Extended perfect human-rodent sequence identity of at least 200 base pairs (ultraconservation) is potentially indicative of evolutionary or functional uniqueness. We used a transgenic mouse assay to compare the embryonic enhancer activity of 231 noncoding ultraconserved human genome regions with that of 206 extremely conserved regions lacking ultraconservation. Developmental enhancers were equally prevalent in both populations, suggesting instead that ultraconservation identifies a small, functionally indistinct subset of similarly constrained cis-regulatory elements.


Science | 2008

Human-specific gain of function in a developmental enhancer.

Shyam Prabhakar; Axel Visel; Jennifer A. Akiyama; Malak Shoukry; Keith D. Lewis; Amy Holt; Ingrid Plajzer-Frick; Harris Morrison; David Fitzpatrick; Veena Afzal; Len A. Pennacchio; Edward M. Rubin; James P. Noonan

Changes in gene regulation are thought to have contributed to the evolution of human development. However, in vivo evidence for uniquely human developmental regulatory function has remained elusive. In transgenic mice, a conserved noncoding sequence (HACNS1) that evolved extremely rapidly in humans acted as an enhancer of gene expression that has gained a strong limb expression domain relative to the orthologous elements from chimpanzee and rhesus macaque. This gain of function was consistent across two developmental stages in the mouse and included the presumptive anterior wrist and proximal thumb. In vivo analyses with synthetic enhancers, in which human-specific substitutions were introduced into the chimpanzee enhancer sequence or reverted in the human enhancer to the ancestral state, indicated that 13 substitutions clustered in an 81–base pair module otherwise highly constrained among terrestrial vertebrates were sufficient to confer the human-specific limb expression domain.


Nature Genetics | 2012

Large-scale discovery of enhancers from human heart tissue

Dalit May; Matthew J. Blow; Tommy Kaplan; David J. McCulley; Brian C. Jensen; Jennifer A. Akiyama; Amy Holt; Ingrid Plajzer-Frick; Malak Shoukry; Crystal Wright; Veena Afzal; Paul C. Simpson; Edward M. Rubin; Brian L. Black; James Bristow; Len A. Pennacchio; Axel Visel

Development and function of the human heart depend on the dynamic control of tissue-specific gene expression by distant-acting transcriptional enhancers. To generate an accurate genome-wide map of human heart enhancers, we used an epigenomic enhancer discovery approach and identified ∼6,200 candidate enhancer sequences directly from fetal and adult human heart tissue. Consistent with their predicted function, these elements were markedly enriched near genes implicated in heart development, function and disease. To further validate their in vivo enhancer activity, we tested 65 of these human sequences in a transgenic mouse enhancer assay and observed that 43 (66%) drove reproducible reporter gene expression in the heart. These results support the discovery of a genome-wide set of noncoding sequences highly enriched in human heart enhancers that is likely to facilitate downstream studies of the role of enhancers in development and pathological conditions of the heart.


Science | 2013

Fine Tuning of Craniofacial Morphology by Distant-Acting Enhancers

Catia Attanasio; Alex S. Nord; Yiwen Zhu; Matthew J. Blow; Zirong Li; Denise K. Liberton; Harris Morrison; Ingrid Plajzer-Frick; Amy Holt; Roya Hosseini; Sengthavy Phouanenavong; Jennifer A. Akiyama; Malak Shoukry; Veena Afzal; Edward M. Rubin; David Fitzpatrick; Bing Ren; Benedikt Hallgrímsson; Len A. Pennacchio; Axel Visel

Introduction The shape of the face is one of the most distinctive features among humans, and differences in facial morphology have substantial implications in areas such as social interaction, psychology, forensics, and clinical genetics. Craniofacial shape is highly heritable, including the normal spectrum of morphological variation as well as susceptibility to major craniofacial birth defects. In this study, we explored the role of transcriptional enhancers in the development of the craniofacial complex. Our study is based on the rationale that such enhancers, which can be hundreds of kilobases away from their target genes, regulate the spatial patterns, levels, and timing of gene expression in normal development. Craniofacial developmental enhancers contribute to craniofacial morphology. We identified distant-acting transcriptional enhancers active in the developing craniofacial complex and studied their activity patterns in detail in transgenic mice (left). Selected enhancers were deleted from the genome in mice in order to examine their role in modulating craniofacial morphology, which revealed subtle but significant effects of enhancers on the shape of the face and skull (right). Methods To identify distant-acting enhancers active during craniofacial development, we used chromatin immunoprecipitation on embryonic mouse face tissue followed by sequencing to identify noncoding genome regions bound by the enhancer-associated p300 protein. We used LacZ reporter assays in transgenic mice and optical projection tomography (OPT) to determine three-dimensional expression patterns of a subset of these candidate enhancers. Last, we deleted three of the craniofacial enhancers from the mouse genome to assess their effect on gene expression and craniofacial morphology during development. Results We identified more than 4000 candidate enhancer sequences predicted to be active in the developing craniofacial complex. The majority of these sequences are at least partially conserved between humans and mice, and many are located in chromosomal regions associated with normal facial morphology or craniofacial birth defects. Characterization of more than 200 candidate enhancer sequences in transgenic mice revealed a remarkable spatial complexity of in vivo expression patterns. Targeted deletions of three craniofacial enhancers near genes with known roles in craniofacial development resulted in changes of expression of those genes as well as quantitatively subtle but definable alterations of craniofacial shape. Discussion Our analysis identifies enhancers that fine tune expression of genes during craniofacial development in mice. These results support that variation in the sequence or copy number of craniofacial enhancers may contribute to the spectrum of facial variation we find in human populations. Because many craniofacial enhancers are located in genome regions associated with craniofacial birth defects, such as clefts of the lip and palate, our results also offer a starting point for exploring the contribution of noncoding sequences to these disorders. No Two Faces Are Alike Gene disruptions can cause severe dysmorphologies like cleft palate, but what causes the subtle shifts in facial morphology that make each face unique? Studying mice, Attanasio et al. (1241006) identified over 4000 candidate genetic enhancers around genes driving craniofacial development. To avoid the challenge of recognizing individual mouse faces, optical projection tomography was used to link changes in facial morphology with alterations in the function of specific enhancers. Targeted deletion of individual craniofacial enhancers from the mouse genome sculpts facial shapes. The shape of the human face and skull is largely genetically determined. However, the genomic basis of craniofacial morphology is incompletely understood and hypothesized to involve protein-coding genes, as well as gene regulatory sequences. We used a combination of epigenomic profiling, in vivo characterization of candidate enhancer sequences in transgenic mice, and targeted deletion experiments to examine the role of distant-acting enhancers in craniofacial development. We identified complex regulatory landscapes consisting of enhancers that drive spatially complex developmental expression patterns. Analysis of mouse lines in which individual craniofacial enhancers had been deleted revealed significant alterations of craniofacial shape, demonstrating the functional importance of enhancers in defining face and skull morphology. These results demonstrate that enhancers are involved in craniofacial development and suggest that enhancer sequence variation contributes to the diversity of human facial morphology.


Cell | 2013

A High-Resolution Enhancer Atlas of the Developing Telencephalon

Axel Visel; Leila Taher; Hani Z. Girgis; Dalit May; Olga Golonzhka; Renée V. Hoch; Gabriel L. McKinsey; Kartik Pattabiraman; Shanni N. Silberberg; Matthew J. Blow; David V. Hansen; Alex S. Nord; Jennifer A. Akiyama; Amy Holt; Roya Hosseini; Sengthavy Phouanenavong; Ingrid Plajzer-Frick; Malak Shoukry; Veena Afzal; Tommy Kaplan; Arnold R. Kriegstein; Edward M. Rubin; Ivan Ovcharenko; Len A. Pennacchio; John L.R. Rubenstein

The mammalian telencephalon plays critical roles in cognition, motor function, and emotion. Though many of the genes required for its development have been identified, the distant-acting regulatory sequences orchestrating their in vivo expression are mostly unknown. Here, we describe a digital atlas of in vivo enhancers active in subregions of the developing telencephalon. We identified more than 4,600 candidate embryonic forebrain enhancers and studied the in vivo activity of 329 of these sequences in transgenic mouse embryos. We generated serial sets of histological brain sections for 145 reproducible forebrain enhancers, resulting in a publicly accessible web-based data collection comprising more than 32,000 sections. We also used epigenomic analysis of human and mouse cortex tissue to directly compare the genome-wide enhancer architecture in these species. These data provide a primary resource for investigating gene regulatory mechanisms of telencephalon development and enable studies of the role of distant-acting enhancers in neurodevelopmental disorders.


Genomics | 2009

Functional autonomy of distant-acting human enhancers.

Axel Visel; Jennifer A. Akiyama; Malak Shoukry; Veena Afzal; Edward M. Rubin; Len A. Pennacchio

Many human genes are associated with dispersed arrays of transcriptional enhancers that regulate their expression in time and space. Studies in invertebrate model systems have suggested that these elements could function as discrete and independent regulatory units, but the in vivo combinatorial properties of vertebrate enhancers remain poorly understood. To explore the modularity and regulatory autonomy of human developmental enhancers, we experimentally concatenated up to four enhancers from different genes and used a transgenic mouse assay to compare the in vivo activity of these compound elements with that of the single modules. In all of the six different combinations of elements tested, the reporter gene activity patterns were additive without signs of interference between the individual modules, indicating that regulatory specificity was maintained despite the presence of closely-positioned heterologous enhancers. Even in cases where two elements drove expression in close anatomical proximity, such as within neighboring subregions of the developing limb bud, the compound patterns did not show signs of cross-inhibition between individual elements or novel expression sites. These data indicate that human developmental enhancers are highly modular and functionally autonomous and suggest that genomic enhancer shuffling may have contributed to the evolution of complex gene expression patterns in vertebrates.


PLOS Genetics | 2014

Tissue-Specific RNA Expression Marks Distant-Acting Developmental Enhancers

Han Wu; Alex S. Nord; Jennifer A. Akiyama; Malak Shoukry; Veena Afzal; Edward M. Rubin; Len A. Pennacchio; Axel Visel

Short non-coding transcripts can be transcribed from distant-acting transcriptional enhancer loci, but the prevalence of such enhancer RNAs (eRNAs) within the transcriptome, and the association of eRNA expression with tissue-specific enhancer activity in vivo remain poorly understood. Here, we investigated the expression dynamics of tissue-specific non-coding RNAs in embryonic mouse tissues via deep RNA sequencing. Overall, approximately 80% of validated in vivo enhancers show tissue-specific RNA expression that correlates with tissue-specific enhancer activity. Globally, we identified thousands of tissue-specifically transcribed non-coding regions (TSTRs) displaying various genomic hallmarks of bona fide enhancers. In transgenic mouse reporter assays, over half of tested TSTRs functioned as enhancers with reproducible activity in the predicted tissue. Together, our results demonstrate that tissue-specific eRNA expression is a common feature of in vivo enhancers, as well as a major source of extragenic transcription, and that eRNA expression signatures can be used to predict tissue-specific enhancers independent of known epigenomic enhancer marks.

Collaboration


Dive into the Malak Shoukry's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Len A. Pennacchio

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Veena Afzal

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Axel Visel

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jennifer A. Akiyama

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Amy Holt

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Ingrid Plajzer-Frick

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Blow

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alex S. Nord

University of California

View shared research outputs
Top Co-Authors

Avatar

Keith D. Lewis

Lawrence Berkeley National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge