Malcolm J. D'Souza
Wesley College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malcolm J. D'Souza.
Journal of Chemical Research-s | 2008
Dennis N. Kevill; Malcolm J. D'Souza
The development of scales of values for solvent nucleophilicity and for the aromatic-ring parameter are described. These are applied to solvolytic addition to carbocations and, together with improved solvent ionising power scales, to solvolyses proceeding with a 1,2-aryl shift and to solvolytic displacements at acyl carbon and at a heteroatom, such as phosphorus or sulfur.
Current Organic Chemistry | 2010
Dennis N. Kevill; Malcolm J. D'Souza
The original Grunwald-Winstein equation (1948) involved the development of a scale of solvent ionizing power (Y). Subsequent work has refined this scale and involved the development of scales of solvent nucleophilicity (N) and a term to correct for deviations when aromatic rings are present, governed by the aromatic ring parameter (I). These three scales, and the sensitivities towards each, can be related to specific rates of solvolysis through linear free energy relationships (LFERs).One important area of application of LFERs has been to the solvolyses of tert-alkyl halides. It has been proposed that the solvolysis of tert-butyl chloride involves a nucleophilic component, although other workers have suggested that the effects observed are related to electrophilic not nucleophilic influences. Takeuchi (1997) studied a compound with two of the methyl groups of tert-butyl chloride replaced by neopentyl groups. For this highly-hindered substrate there was no evidence for nucleophilic participation. Liu (1998) and Takeuchi (2001) have reported concerning the solvolyses of additional significantly-hindered tertiary alkyl chlorides. Liu (2009) has presented a parallel study of bromides. Martins (2008) has considered hindered tertiary alkyl halides, mainly with carbon-carbon multiple bonds as substituents. It was proposed that the hI term was of importance, with the sensitivities (h) sometimes positive and sometimes negative. To explain negative values, it was suggested that the I scale might contain a nucleophilicity component. In this review, we bring together, with analysis and commentary, the work of Takeuchi, Liu, Martins and others concerning the solvolyses of tertiary alkyl halides, with emphasis on the relevance of the three scales that have been developed for use in Grunwald-Winstein correlations.
Beilstein Journal of Organic Chemistry | 2011
Malcolm J. D'Souza; Matthew J. McAneny; Dennis N. Kevill; Jin Burm Kyong; Song Hee Choi
Summary The specific rates of solvolysis of isobutyl chloroformate (1) are reported at 40.0 °C and those for isobutyl chlorothioformate (2) are reported at 25.0 °C, in a variety of pure and binary aqueous organic mixtures with wide ranging nucleophilicity and ionizing power. For 1, we also report the first-order rate constants determined at different temperatures in pure ethanol (EtOH), methanol (MeOH), 80% EtOH, and in both 97% and 70% 2,2,2-trifluoroethanol (TFE). The enthalpy (ΔH≠) and entropy (ΔS≠) of activation values obtained from Arrhenius plots for 1 in these five solvents are reported. The specific rates of solvolysis were analyzed using the extended Grunwald–Winstein equation. Results obtained from correlation analysis using this linear free energy relationship (LFER) reinforce our previous suggestion that side-by-side addition–elimination and ionization mechanisms operate, and the relative importance is dependent on the type of chloro- or chlorothioformate substrate and the solvent.
International Journal of Molecular Sciences | 2008
Malcolm J. D'Souza; Kevin E. Shuman; Shannon E. Carter; Dennis N. Kevill
Specific rates of solvolysis at 25 °C for p-nitrophenyl chloroformate (1) are analyzed using the extended (two-term) Grunwald-Winstein equation. For 39 solvents, the sensitivities (l = 1.68±0.06 and m = 0.46±0.04) towards changes in solvent nucleophilicity (l) and solvent ionizing power (m) obtained, are similar to those previously observed for phenyl chloroformate (2) and p-methoxyphenyl chloroformate (3). The observations incorporating new kinetic data in several fluoroalcohol-containing mixtures, are rationalized in terms of the reaction being sensitive to substituent effects and the mechanism of reaction involving the addition (association) step of an addition-elimination (association-dissociation) pathway being rate-determining. The l/m ratios obtained for 1, 2, and 3, are also compared to the previously published l/m ratios for benzyl chloroformate (4) and p-nitrobenzyl chloroformate (5).
Journal of The Chemical Society-perkin Transactions 1 | 1995
Dennis N. Kevill; Malcolm J. D'Souza
In almost all cases, Grunwald–Winstein treatments of the specific rates of solvolysis of a series of secondary and tertiary benzylic toluene-p-sulfonates, p-nitrobenzoates, chlorides and bromides exhibit a considerably improved correlation coefficient and a higher F-test value on incorporation of an hI term, where h is the sensitivity towards changes in the recently developed aromatic ring parameter (I). The h values increase on introduction of a second aromatic ring at the α-carbon, on introduction of an electron-withdrawing α-trifluoromethyl group, and on introduction of an electron-supplying aromatic-ring substituent.
International Journal of Molecular Sciences | 2011
Malcolm J. D'Souza; Shannon E. Carter; Dennis N. Kevill
The specific rates of solvolysis of neopentyl chloroformate (1) have been determined in 21 pure and binary solvents at 45.0 °C. In most solvents the values are essentially identical to those for ethyl and n-propyl chloroformates. However, in aqueous-1,1,1,3,3,3-hexafluoro-2-propanol mixtures (HFIP) rich in fluoroalcohol, 1 solvolyses appreciably faster than the other two substrates. Linear free energy relationship (LFER) comparison of the specific rates of solvolysis of 1 with those for phenyl chloroformate and those for n-propyl chloroformate are helpful in the mechanistic considerations, as is also the treatment in terms of the Extended Grunwald-Winstein equation. It is proposed that the faster reaction for 1 in HFIP rich solvents is due to the influence of a 1,2-methyl shift, leading to a tertiary alkyl cation, outweighing the only weak nucleophilic solvation of the cation possible in these low nucleophilicity solvents.
International Journal of Molecular Sciences | 2012
Malcolm J. D'Souza; Jaci A. Knapp; Gabriel A. Fernandez-Bueno; Dennis N. Kevill
The specific rates of solvolysis of 2-butyn-1-yl-chloroformate (1) and 2-methoxyphenyl chloroformate (2) are studied at 25.0 °C in a series of binary aqueousorganic mixtures. The rates of reaction obtained are then analyzed using the extended Grunwald-Winstein (G-W) equation and the results are compared to previously published G-W analyses for phenyl chloroformate (3), propargyl chloroformate (4), p-methoxyphenyl choroformate (5), and p-nitrophenyl chloroformate (6). For 1, the results indicate that dual side-by-side addition-elimination and ionization pathways are occurring in some highly ionizing solvents due to the presence of the electron-donating γ-methyl group. For 2, the analyses indicate that the dominant mechanism is a bimolecular one where the formation of a tetrahedral intermediate is rate-determining.
Organic Chemistry International | 2010
Malcolm J. D'Souza; Anthony M. Darrington; Dennis N. Kevill
In solvolysis studies using Grunwald-Winstein plots, dispersions were observed for substrates with aromatic rings at the α-carbon. Several examples for the unimolecular solvolysis of monoaryl benzylic derivatives and related diaryl- or naphthyl- substituted derivatives have now been reported, where the application of the aromatic ring parameter (I) removes this dispersion. A recent claim suggesting the presence of an appreciable nucleophilic component to the I scale, has now been shown, in a review of the solvolysis of highly-hindered alkyl halides, to be unlikely to be correct. Attention is now focused on the application of the hI term for the solvolysis of compounds containing a double bond in the vicinity of any developing carbocation. Available specific rates of solvolysis (plus some new values) at 25°C of cinnamyl chloride, cinnamyl bromide, cinnamoyl chloride, p-chlorocinnamoyl chloride, and p-nitrocinnamoyl chloride are analyzed using the simple and extended (including the hI term) Grunwald-Winstein equations.
Journal of Chemical Research-s | 2003
Malcolm J. D'Souza; Mary E. Stant-Boggs; Robin White; Dennis N. Kevill
The specific rates of solvolysis of 2-thiophenecarbonyl chloride are very well correlated by the extended Grunwald-Winstein equation over a wide range of solvents; contrary to previous claims of an SN2 mechanism, the solvolyses are predominantly by an ionisation mechanism aided by nucleophilic solvation.
International Journal of Molecular Sciences | 2014
Malcolm J. D'Souza; Dennis N. Kevill
The replacement of oxygen within a chloroformate ester (ROCOCl) by sulfur can lead to a chlorothioformate (RSCOCl), a chlorothionoformate (ROCSCl), or a chlorodithioformate (RSCSCl). Phenyl chloroformate (PhOCOCl) reacts over the full range of solvents usually included in Grunwald-Winstein equation studies of solvolysis by an addition-elimination (A-E) pathway. At the other extreme, phenyl chlorodithioformate (PhSCSCl) reacts across the range by an ionization pathway. The phenyl chlorothioformate (PhSCOCl) and phenyl chlorothionoformate (PhOCSCl) react at remarkably similar rates in a given solvent and there is a dichotomy of behavior with the A-E pathway favored in solvents such as ethanol-water and the ionization mechanism favored in aqueous solvents rich in fluoroalcohol. Alkyl esters behave similarly but with increased tendency to ionization as the alkyl group goes from 1° to 2° to 3°. N,N-Disubstituted carbamoyl halides favor the ionization pathway as do also the considerably faster reacting thiocarbamoyl chlorides. The tendency towards ionization increases as, within the three contributing structures of the resonance hybrid for the formed cation, the atoms carrying positive charge (other than the central carbon) change from oxygen to sulfur to nitrogen, consistent with the relative stabilities of species with positive charge on these atoms.