Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malcolm J. McConville is active.

Publication


Featured researches published by Malcolm J. McConville.


Nature | 2012

MR1 presents microbial vitamin B metabolites to MAIT cells

Lars Kjer-Nielsen; Onisha Patel; Alexandra J. Corbett; Jérôme Le Nours; Bronwyn Meehan; Ligong Liu; Mugdha Bhati; Zhenjun Chen; Lyudmila Kostenko; Rangsima Reantragoon; Nicholas A. Williamson; Anthony W. Purcell; Nadine L. Dudek; Malcolm J. McConville; Richard A. J. O’Hair; George N. Khairallah; Dale I. Godfrey; David P. Fairlie; Jamie Rossjohn; James McCluskey

Antigen-presenting molecules, encoded by the major histocompatibility complex (MHC) and CD1 family, bind peptide- and lipid-based antigens, respectively, for recognition by T cells. Mucosal-associated invariant T (MAIT) cells are an abundant population of innate-like T cells in humans that are activated by an antigen(s) bound to the MHC class I-like molecule MR1. Although the identity of MR1-restricted antigen(s) is unknown, it is present in numerous bacteria and yeast. Here we show that the structure and chemistry within the antigen-binding cleft of MR1 is distinct from the MHC and CD1 families. MR1 is ideally suited to bind ligands originating from vitamin metabolites. The structure of MR1 in complex with 6-formyl pterin, a folic acid (vitamin B9) metabolite, shows the pterin ring sequestered within MR1. Furthermore, we characterize related MR1-restricted vitamin derivatives, originating from the bacterial riboflavin (vitamin B2) biosynthetic pathway, which specifically and potently activate MAIT cells. Accordingly, we show that metabolites of vitamin B represent a class of antigen that are presented by MR1 for MAIT-cell immunosurveillance. As many vitamin biosynthetic pathways are unique to bacteria and yeast, our data suggest that MAIT cells use these metabolites to detect microbial infection.


European Journal of Immunology | 2003

MyD88 is essential for clearance of Leishmania major: possible role for lipophosphoglycan and Toll-like receptor 2 signaling.

Michael J. de Veer; Joan M. Curtis; Tracey M. Baldwin; Joseph A. DiDonato; Adrienne C. Sexton; Malcolm J. McConville; Emanuela Handman; Louis Schofield

Leishmania major is an obligate intracellular eukaryotic pathogen of mononuclear phagocytes. Invasive promastigotes gain entry into target cells by receptor‐mediated phagocytosis, transform into non‐motile amastigotes and establish in the phagolysosome. Glycosylphosphatidylinositol‐anchored lipophosphoglycan (LPG) is a virulence factor and a major parasite molecule involved in this process. We observed that mice lacking the Toll‐like receptor (TLR) pathway adaptor protein MyD88 were more susceptible to infection with L. major than wild‐type C57BL/6 mice, demonstrating a central role for this innate immune recognition pathway in control of infection, and suggesting that L. major possesses a ligand for TLR. We sought to identify parasite molecules capable of activating the protective Toll pathway, and found that purified Leishmania LPG, but not other surface glycolipids, activate innate immune signaling pathways via TLR2. Activation of cytokine synthesis by LPG required the presence of the lipid anchor and a functional MyD88 adaptor protein. LPG also induced the expression of negative regulatory pathways mediated by members of thesuppressors of cytokine signaling family SOCS‐1 and SOCS‐3. Thus, the Toll pathway is required for resistance to L. major and LPG is a defined TLR agonist from this important human pathogen.


The EMBO Journal | 1992

Developmental modification of lipophosphoglycan during the differentiation of Leishmania major promastigotes to an infectious stage

Malcolm J. McConville; Salvatore J. Turco; Michael A. J. Ferguson; D. L. Sacks

Protozoan parasites of the genus Leishmania produce the novel surface glycoconjugate, lipophosphoglycan (LPG), which is required for parasite infectivity. In this study we show that LPG structure is modified during the differentiation of L. major promastigotes from a less infectious form in logarithmic growth phase to a highly infectious ‘metacyclic’ form during stationary growth phase. In both stages, the LPGs comprise linear chains of phosphorylated oligosaccharide repeat units which are anchored to the membrane via a glycosyl‐phosphatidylinositol glycolipid anchor. During metacyclogenesis there is (i) an approximate doubling in the average number of repeat units per molecule from 14 to 30, (ii) a pronounced decrease in the relative abundance of repeat units with side chains of beta Gal or Gal beta 1–3Gal beta 1‐, and a corresponding increase in repeat units with either no side chains or with side chains of Arap alpha 1–2 Gal beta 1‐ and (iii) a decrease in the frequency with which the glycolipid anchor is substituted with a single glucose alpha 1‐phosphate residue. While the majority of the LPG phosphoglycan chains are capped with the neutral disaccharide, Man alpha 1–2Man, a significant minority of the chains appeared to terminate in non‐phosphorylated repeat units and may represent incompletely capped species. We suggest that the developmental modification of LPG may be important in modulating the binding of promastigotes to receptors in the sandfly midgut and on human macrophages and in increasing the resistance of metacyclic promastigotes to complement‐mediated lysis.


Nature Communications | 2015

Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites

Alison N. Thorburn; Craig McKenzie; Sj Shen; Dragana Stanley; Laurence Macia; Linda J. Mason; Laura K. Roberts; Connie Hoi Yee Wong; Raymond Shim; Remy Robert; Nina Chevalier; Jian K. Tan; Eliana Mariño; Robert J. Moore; Lee H. Wong; Malcolm J. McConville; Dedreia Tull; Lisa Wood; Vanessa E. Murphy; Joerg Mattes; Peter G. Gibson; Charles R. Mackay

Asthma is prevalent in Western countries, and recent explanations have evoked the actions of the gut microbiota. Here we show that feeding mice a high-fibre diet yields a distinctive gut microbiota, which increases the levels of the short-chain fatty acid, acetate. High-fibre or acetate-feeding led to marked suppression of allergic airways disease (AAD, a model for human asthma), by enhancing T-regulatory cell numbers and function. Acetate increases acetylation at the Foxp3 promoter, likely through HDAC9 inhibition. Epigenetic effects of fibre/acetate in adult mice led us to examine the influence of maternal intake of fibre/acetate. High-fibre/acetate feeding of pregnant mice imparts on their adult offspring an inability to develop robust AAD. High fibre/acetate suppresses expression of certain genes in the mouse fetal lung linked to both human asthma and mouse AAD. Thus, diet acting on the gut microbiota profoundly influences airway responses, and may represent an approach to prevent asthma, including during pregnancy.


Journal of Biological Chemistry | 2005

Distinct Protein Classes Including Novel Merozoite Surface Antigens in Raft-like Membranes of Plasmodium falciparum

Paul R. Sanders; Paul R. Gilson; Greg T. Cantin; Doron C. Greenbaum; Thomas Nebl; Daniel J. Carucci; Malcolm J. McConville; Louis Schofield; Anthony N. Hodder; John R. Yates; Brendan S. Crabb

Glycosylphosphatidylinositol (GPI)-anchored proteins coat the surface of extracellular Plasmodium falciparum merozoites, of which several are highly validated candidates for inclusion in a blood-stage malaria vaccine. Here we determined the proteome of gradient-purified detergent-resistant membranes of mature blood-stage parasites and found that these membranes are greatly enriched in GPI-anchored proteins and their putative interacting partners. Also prominent in detergent-resistant membranes are apical organelle (rhoptry), multimembrane-spanning, and proteins destined for export into the host erythrocyte cytosol. Four new GPI-anchored proteins were identified, and a number of other novel proteins that are predicted to localize to the merozoite surface and/or apical organelles were detected. Three of the putative surface proteins possessed six-cysteine (Cys6) motifs, a distinct fold found in adhesive surface proteins expressed in other life stages. All three Cys6 proteins, termed Pf12, Pf38, and Pf41, were validated as merozoite surface antigens recognized strongly by antibodies present in naturally infected individuals. In addition to the merozoite surface, Pf38 was particularly prominent in the secretory apical organelles. A different cysteine-rich putative GPI-anchored protein, Pf92, was also localized to the merozoite surface. This insight into merozoite surfaces provides new opportunities for understanding both erythrocyte invasion and anti-parasite immunity.


Cellular Microbiology | 2007

The Leishmania-macrophage interaction: a metabolic perspective.

Thomas Naderer; Malcolm J. McConville

Protozoan parasites belonging to the genus Leishmania exhibit a pronounced tropism for macrophages although they have the capacity to infect a variety of other phagocytic and non‐phagocytic mammalian cells. Unlike most other intramacrophage pathogens, the major proliferative stage of Leishmania resides in the mature phagolysosomes of these host cells. In this review we highlight some of the strategies utilized by the intracellular amastigote stage of Leishmania to survive in this compartment. Remarkably, and in contrast to many other intracellular pathogens, Leishmania amastigotes have a minimalist surface glycocalyx which may facilitate uptake of essential lipids and promote exposure of phospholipids required for phagocytosis via macrophage apoptotic cell receptors. Leishmania amastigotes also differ from many other intracellular pathogens in having complex nutritional requirements which must be scavenged from the host cell. Amino acids and polyamines appear to be important carbon sources and growth‐limiting nutrients, respectively, and their availability to intracellular amastigotes may be regulated by the activation state of host macrophages. Metabolic processes in both the parasite and host cell may thus be crucial determinants of disease outcome.


Current Molecular Medicine | 2004

Surface Determinants of Leishmania Parasites and their Role in Infectivity in the Mammalian Host

Thomas Naderer; James E. Vince; Malcolm J. McConville

Leishmania are intracellular protozoan parasites that reside primarily in host mononuclear phagocytes. Infection of host macrophages is initiated by infective promastigote stages and perpetuated by an obligate intracellular amastigote stage. Studies undertaken over the last decade have shown that the composition of the complex surface glycocalyx of these stages (comprising lipophosphoglycan, GPI-anchored glycoproteins, proteophosphoglycans and free GPI glycolipids) changes dramatically as promastigotes differentiate into amastigotes. Marked stage-specific changes also occur in the expression of other plasma membrane components, including type-1, polytopic and peripheral membrane proteins, reflecting the distinct microbicidal responses and nutritional environments encountered by these stages. More recently, a number of Leishmania mutants lacking single or multiple surface components have been generated. While some of these mutants are less virulent than wild type parasites, many of these mutants exhibit only mild or no loss of virulence. These studies suggest that, 1) the major surface glycocalyx components of the promastigote stage (i.e. LPG, GPI-anchored proteins) only have a transient or minor role in macrophage invasion, 2) that there is considerable functional redundancy in the surface glycocalyx and/or loss of some components can be compensated for by the acquisition of equivalent host glycolipids, 3) the expression of specific nutrient transporters is essential for life in the macrophage and 4) the role(s) of some surface components differ markedly in different Leishmania species. These mutants will be useful for identifying other surface or intracellular components that are required for virulence in macrophages.


BMC Biology | 2013

Mitochondrial metabolism of sexual and asexual blood stages of the malaria parasite Plasmodium falciparum

James MacRae; Matthew W. A. Dixon; Megan K. Dearnley; Hwa H. Chua; Jennifer M. Chambers; Shannon Kenny; Iveta Bottova; Leann Tilley; Malcolm J. McConville

BackgroundThe carbon metabolism of the blood stages of Plasmodium falciparum, comprising rapidly dividing asexual stages and non-dividing gametocytes, is thought to be highly streamlined, with glycolysis providing most of the cellular ATP. However, these parasitic stages express all the enzymes needed for a canonical mitochondrial tricarboxylic acid (TCA) cycle, and it was recently proposed that they may catabolize glutamine via an atypical branched TCA cycle. Whether these stages catabolize glucose in the TCA cycle and what is the functional significance of mitochondrial metabolism remains unresolved.ResultsWe reassessed the central carbon metabolism of P. falciparum asexual and sexual blood stages, by metabolically labeling each stage with 13C-glucose and 13C-glutamine, and analyzing isotopic enrichment in key pathways using mass spectrometry. In contrast to previous findings, we found that carbon skeletons derived from both glucose and glutamine are catabolized in a canonical oxidative TCA cycle in both the asexual and sexual blood stages. Flux of glucose carbon skeletons into the TCA cycle is low in the asexual blood stages, with glutamine providing most of the carbon skeletons, but increases dramatically in the gametocyte stages. Increased glucose catabolism in the gametocyte TCA cycle was associated with increased glucose uptake, suggesting that the energy requirements of this stage are high. Significantly, whereas chemical inhibition of the TCA cycle had little effect on the growth or viability of asexual stages, inhibition of the gametocyte TCA cycle led to arrested development and death.ConclusionsOur metabolomics approach has allowed us to revise current models of P. falciparum carbon metabolism. In particular, we found that both asexual and sexual blood stages utilize a conventional TCA cycle to catabolize glucose and glutamine. Gametocyte differentiation is associated with a programmed remodeling of central carbon metabolism that may be required for parasite survival either before or after uptake by the mosquito vector. The increased sensitivity of gametocyte stages to TCA-cycle inhibitors provides a potential target for transmission-blocking drugs.


Molecular Microbiology | 2002

Identification of a peptide synthetase involved in the biosynthesis of glycopeptidolipids of Mycobacterium smegmatis

Helen Billman-Jacobe; Malcolm J. McConville; Ruth E. Haites; Svetozar Kovacevic; Ross L. Coppel

Five rough colony mutants of Mycobacterium smegmatis mc2155 were produced by transposon mutagenesis. The mutants were unable to synthesize glycopeptidolipids that are normally abundant in the cell wall of wild‐type M. smegmatis. The glycopeptidolipids have a lipopeptide core comprising a fatty acid amide linked to a tetrapeptide that is modified with O‐methylated rhamnose and O‐acylated 6‐deoxy talose. Compositional analysis of lipids extracted from the mutants indicated that the defect in glycopeptidolipid synthesis occurred in the assembly of the lipopeptide core. No other defects or compensatory changes in cell wall structure were detected in the mutants. All five mutants had transposon insertions in a gene encoding an enzyme belonging to the peptide synthetase family. Targeted disruption of the gene in the wild‐type strain gave a phenotype identical to that of the five transposon mutants. The M. smegmatis peptide synthetase gene is predicted to encode four modules that each contain domains for cofactor binding and for amino acid recognition and adenylation. Three modules also have amino acid racemase domains. These data suggest that the common lipopeptide core of these important cell wall glycolipids is synthesized by a peptide synthetase.


PLOS Biology | 2008

Humans lack iGb3 due to the absence of functional iGb3-synthase: implications for NKT cell development and transplantation.

Dale Christiansen; Julie Milland; Effie Mouhtouris; Hilary A. Vaughan; Daniel G. Pellicci; Malcolm J. McConville; Dale I. Godfrey; Mauro S. Sandrin

The glycosphingolipid isoglobotrihexosylceramide, or isogloboside 3 (iGb3), is believed to be critical for natural killer T (NKT) cell development and self-recognition in mice and humans. Furthermore, iGb3 may represent an important obstacle in xenotransplantation, in which this lipid represents the only other form of the major xenoepitope Galα(1,3)Gal. The role of iGb3 in NKT cell development is controversial, particularly with one study that suggested that NKT cell development is normal in mice that were rendered deficient for the enzyme iGb3 synthase (iGb3S). We demonstrate that spliced iGb3S mRNA was not detected after extensive analysis of human tissues, and furthermore, the iGb3S gene contains several mutations that render this product nonfunctional. We directly tested the potential functional activity of human iGb3S by expressing chimeric molecules containing the catalytic domain of human iGb3S. These hybrid molecules were unable to synthesize iGb3, due to at least one amino acid substitution. We also demonstrate that purified normal human anti-Gal immunoglobulin G can bind iGb3 lipid and mediate complement lysis of transfected human cells expressing iGb3. Collectively, our data suggest that iGb3S is not expressed in humans, and even if it were expressed, this enzyme would be inactive. Consequently, iGb3 is unlikely to represent a primary natural ligand for NKT cells in humans. Furthermore, the absence of iGb3 in humans implies that it is another source of foreign Galα(1,3)Gal xenoantigen, with obvious significance in the field of xenotransplantation.

Collaboration


Dive into the Malcolm J. McConville's collaboration.

Top Co-Authors

Avatar

Dedreia Tull

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antony Bacic

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge