Malcolm Stuart Hicken
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malcolm Stuart Hicken.
The Astrophysical Journal | 2007
William Michael Wood-Vasey; Gajus A. Miknaitis; Christopher W. Stubbs; Saurabh W. Jha; Adam G. Riess; Peter Marcus Garnavich; Robert P. Kirshner; C. A. Aguilera; Andrew Cameron Becker; J. W. Blackman; Stephane Blondin; Peter M. Challis; Alejandro Clocchiatti; A. Conley; Ricardo Alberto Covarrubias; Tamara M. Davis; A. V. Filippenko; Ryan J. Foley; Arti Garg; Malcolm Stuart Hicken; Kevin Krisciunas; Bruno Leibundgut; Weidong Li; Thomas Matheson; Antonino Miceli; Gautham S. Narayan; G. Pignata; Jose Luis Palacio Prieto; A. Rest; Maria Elena Salvo
We present constraints on the dark energy equation-of-state parameter, w = P/(rho c(2)), using 60 SNe Ia fromthe ESSENCE supernova survey. We derive a set of constraints on the nature of the dark energy assuming a flat universe. By including constraints on (Omega(M), w) from baryon acoustic oscillations, we obtain a value for a static equation-of-state parameter w = -1:05(-0.12)(+0: 13) (stat 1 sigma) +/- 0: 13 (sys) and Omega(M) = 0:274(-0.020)(+0:033) (stat 1 sigma) with a bestfit chi(2)/dof of 0.96. These results are consistent with those reported by the Supernova Legacy Survey from the first year of a similar program measuring supernova distances and redshifts. We evaluate sources of systematic error that afflict supernova observations and present Monte Carlo simulations that explore these effects. Currently, the largest systematic with the potential to affect our measurements is the treatment of extinction due to dust in the supernova host galaxies. Combining our set of ESSENCE SNe Ia with the first-results Supernova Legacy Survey SNe Ia, we obtain a joint constraint of w = -1:07(-0: 09)(+0:09) (stat 1 sigma) +/- 0: 13 ( sys), Omega(M) 0:267(-0:028)(+0:028) (stat 1 sigma) with a best-fit chi(2)/dof of 0.91. The current global SN Ia data alone rule out empty (Omega(M) = 0), matter-only Omega(M) = 0: 3, and Omega(M) = 1 universes at > 4.5 sigma. The current SN Ia data are fully consistent with a cosmological constant.
The Astrophysical Journal | 2007
Gajus A. Miknaitis; G. Pignata; A. Rest; William Michael Wood-Vasey; Stephane Blondin; Peter M. Challis; Robert Connon Smith; Christopher W. Stubbs; Nicholas B. Suntzeff; Ryan J. Foley; Thomas Matheson; John L. Tonry; C. A. Aguilera; J. W. Blackman; Andrew Cameron Becker; Alejandro Clocchiatti; Ricardo Alberto Covarrubias; Tamara M. Davis; A. V. Filippenko; Arti Garg; Peter Marcus Garnavich; Malcolm Stuart Hicken; Saurabh W. Jha; Kevin Krisciunas; Robert P. Kirshner; Bruno Leibundgut; Weidong Li; Antonino Miceli; Gautham S. Narayan; Jose Luis Palacio Prieto
We describe the implementation and optimization of the ESSENCE supernova survey, which we have undertaken to measure the dark energy equation-of-state parameter, w = P/(rho c(2)). We present a meth ...
The Astronomical Journal | 2006
Saurabh W. Jha; Robert P. Kirshner; Peter M. Challis; Peter Marcus Garnavich; Thomas Matheson; Alicia M. Soderberg; Genevieve J. Graves; Malcolm Stuart Hicken; J. Alves; Hector G. Arce; Zoltan Balog; Pauline Barmby; Elizabeth J. Barton; Perry L. Berlind; Ann E. Bragg; César A. Briceño; Warren R. Brown; James H. Buckley; Nelson Caldwell; Michael L. Calkins; Barbara J. Carter; Kristi Dendy Concannon; R. Hank Donnelly; Kristoffer A. Eriksen; Daniel G. Fabricant; Emilio E. Falco; F. Fiore; M. R. Garcia; Mercedes Gomez; Norman A. Grogin
We present UBVRI photometry of 44 Type Ia supernovae (SNe Ia) observed from 1997 to 2001 as part of a continuing monitoring campaign at the Fred Lawrence Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics. The data set comprises 2190 observations and is the largest homogeneously observed and reduced sample of SNe Ia to date, nearly doubling the number of well-observed, nearby SNe Ia with published multicolor CCD light curves. The large sample of U-band photometry is a unique addition, with important connections to SNe Ia observed at high redshift. The decline rate of SN Ia U-band light curves correlates well with the decline rate in other bands, as does the U - B color at maximum light. However, the U-band peak magnitudes show an increased dispersion relative to other bands even after accounting for extinction and decline rate, amounting to an additional ~40% intrinsic scatter compared to the B band.
The Astrophysical Journal | 2009
Maryam Modjaz; Weidong Li; N. Butler; Ryan Chornock; Daniel A. Perley; Stephane Blondin; J. S. Bloom; A. V. Filippenko; Robert P. Kirshner; Daniel Kocevski; Dovi Poznanski; Malcolm Stuart Hicken; Ryan J. Foley; Guy S. Stringfellow; Perry L. Berlind; D. Barrado y Navascués; Cullen H. Blake; Herve Bouy; Warren R. Brown; Peter M. Challis; H.-. W. Chen; W. H. de Vries; P. Dufour; Emilio E. Falco; Andrew S. Friedman; Mohan Ganeshalingam; Peter Marcus Garnavich; B. Holden; G. D. Illingworth; Nicholas Lee
We present extensive early photometric (ultraviolet through near-infrared) and spectroscopic (optical and near-infrared) data on supernova (SN) 2008D as well as X-ray data analysis on the associated Swift X-ray transient (XRT) 080109. Our data span a time range of 5 hr before the detection of the X-ray transient to 150days after its detection, and a detailed analysis allowed us to derive constraints on the nature of the SN and its progenitor; throughout we draw comparisons with results presented in the literature and find several key aspects that differ. We show that the X-ray spectrum of XRT 080109 can be fit equally well by an absorbed power law or a superposition of about equal parts of both power law and blackbody. Our data first established that SN 2008D is a spectroscopically normal SN Ib (i.e., showing conspicuous He lines) and showed that SN 2008D had a relatively long rise time of 18days and a modest optical peak luminosity. The early-time light curves of the SN are dominated by a cooling stellar envelope (for Δt0.1-4days, most pronounced in the blue bands) followed by 56Ni decay. We construct a reliable measurement of the bolometric output for this stripped-envelope SN, and, combined with estimates of E K and M ej from the literature, estimate the stellar radius R ⊙ of its probable Wolf-Rayet progenitor. According to the model of Waxman etal. and Chevalier & Fransson, we derive R W07⊙ = 1.2 0.7R ⊙ and R CF08⊙ = 12 7 R ⊙, respectively; the latter being more in line with typical WN stars. Spectra obtained at three and four months after maximum light show double-peaked oxygen lines that we associate with departures from spherical symmetry, as has been suggested for the inner ejecta of a number of SN Ib cores.
The Astrophysical Journal | 2003
Thomas Matheson; Peter Marcus Garnavich; Krzysztof Zbigniew Stanek; D. F. Bersier; Stephen T. Holland; Kevin Krisciunas; Nelson Caldwell; Perry L. Berlind; J. S. Bloom; Michael Bolte; A. Z. Bonanos; Michael J. I. Brown; Warren R. Brown; M. Calkins; Peter M. Challis; Ryan Chornock; L. Echevarria; Daniel J. Eisenstein; Mark E. Everett; A. V. Filippenko; K. Flint; Ryan J. Foley; D. L. Freedman; Mario Hamuy; Paul Harding; Nimish P. Hathi; Malcolm Stuart Hicken; Charles G. Hoopes; C. D. Impey; Buell T. Jannuzi
We present extensive optical and infrared photometry of the afterglow of gamma-ray burst (GRB) 030329 and its associated supernova (SN) 2003dh over the first two months after detection (2003 March 30-May 29 UT). Optical spectroscopy from a variety of telescopes is shown and, when combined with the photometry, allows an unambiguous separation between the afterglow and SN contributions. The optical afterglow of the GRB is initially a power-law continuum but shows significant color variations during the first week that are unrelated to the presence of an SN. The early afterglow light curve also shows deviations from the typical power-law decay. An SN spectrum is first detectable ~7 days after the burst and dominates the light after ~11 days. The spectral evolution and the light curve are shown to closely resemble those of SN 1998bw, a peculiar Type Ic SN associated with GRB 980425, and the time of the SN explosion is close to the observed time of the GRB. It is now clear that at least some GRBs arise from core-collapse SNe.
The Astrophysical Journal | 2007
Malcolm Stuart Hicken; Peter Marcus Garnavich; Jose Luis Palacio Prieto; Stephane Blondin; D. L. DePoy; Robert P. Kirshner; Jerod T. Parrent
Spectra and light curves of SN 2006gz show the strongest signature of unburned carbon and one of the slowest fading light curves ever seen in a Type Ia event [Δm15(B) = 0.69 ± 0.04]. The early-time Si II velocity is low, implying it was slowed by an envelope of unburned material. Our best estimate of the luminosity implies MV = -19.74 and the production of ~1.2 M☉ of 56Ni. This suggests a super-Chandrasekhar mass progenitor. A double degenerate merger is consistent with these observations.
The Astrophysical Journal | 2006
Maryam Modjaz; Krzysztof Zbigniew Stanek; Peter Marcus Garnavich; P. Berlind; Stephane Blondin; Warren R. Brown; M. L. Calkins; Peter M. Challis; Aleksandar M. Diamond-Stanic; Heng Hao; Malcolm Stuart Hicken; Robert P. Kirshner; Jose Luis Palacio Prieto
We present early photometric and spectroscopic data on the afterglow of GRB 060218 and report the evolution of the underlying supernova SN 2006aj. Our data span a time range of 4-23 days after the GRB and clearly establish that SN 2006aj is a fast-evolving broad-lined Type Ic SN with an extremely short rise time (~10 days) and a large optical peak luminosity (MV = -18.7 mag). The supernova properties are deduced well since the gamma-ray burst (GRB) afterglow does not contribute a significant amount to the total light output. The spectra show broad lines indicative of large expansion velocities but are better matched by those of SN 2002ap and SN 1997ef (not associated with a GRB) than those of the prototypical GRB-related SN 1998bw. We refine the redshift estimate to z = 0.03351 ± 0.00007. The host galaxy is a low-metallicity dwarf galaxy (with MV, host = -16.0 mag), similar to host galaxies of other GRB-associated SNe.
The Astrophysical Journal | 2009
Xiaofeng Wang; Weidong Li; A. V. Filippenko; Ryan J. Foley; Robert P. Kirshner; M. Modjaz; J. S. Bloom; Peter J. Brown; D. Carter; Andrew S. Friedman; Avishay Gal-Yam; Mohan Ganeshalingam; Malcolm Stuart Hicken; Kevin Krisciunas; Peter A. Milne; Jeffrey M. Silverman; Nicholas B. Suntzeff; W. M. Wood-Vasey; S. B. Cenko; Peter M. Challis; Derek B. Fox; David Kirkman; J. Li; Ti-Pei Li; M. Malkan; M. R. Moore; David B. Reitzel; Robert Michael Rich; F. J. D. Serduke; Ren-Cheng Shang
We present extensive photometry at ultraviolet (UV), optical, and near-infrared (NIR) wavelengths, as well as dense sampling of optical spectra, for the normal Type Ia supernova (SN Ia) 2005cf. The optical photometry, performed at eight different telescopes, shows a 1σ scatter of ≾0.03 mag after proper corrections for the instrument responses. From the well-sampled light curves, we find that SN 2005cf reached a B-band maximum at 13.63 ± 0.02 mag, with an observed luminosity decline rate Δm _(15)(B) = 1.05 ± 0.03 mag. The correlations between the decline rate and various color indexes, recalibrated on the basis of an expanded SN Ia sample, yield a consistent estimate for the host-galaxy reddening of SN 2005cf, E(B – V)_(host) = 0.10 ± 0.03 mag. The UV photometry was obtained with the Hubble Space Telescope and the Swift Ultraviolet/Optical Telescope, and the results match each other to within 0.1-0.2 mag. The UV light curves show similar evolution to the broadband U, with an exception in the 2000-2500 A spectral range (corresponding to the F220W/uvm2 filters), where the light curve appears broader and much fainter than that on either side (likely owing to the intrinsic spectral evolution). Combining the UV data with the ground-based optical and NIR data, we establish the generic UV-optical-NIR bolometric light curve for SN 2005cf and derive the bolometric corrections in the absence of UV and/or NIR data. The overall spectral evolution of SN 2005cf is similar to that of a normal SN Ia, but with variety in the strength and profile of the main feature lines. The spectra at early times displayed strong, high-velocity (HV) features in the Ca II H&K doublet and NIR triplet, which were distinctly detached from the photosphere (v ≈ 10,000 km s^(–1)) at a velocity ranging from 20,000 to 25,000 km s^(–1). One interesting feature is the flat-bottomed absorption observed near 6000 A in the earliest spectrum, which rapidly evolved into a triangular shape and then became a normal Si II λ6355 absorption profile at about one week before maximum brightness. This premaximum spectral evolution is perhaps due to the blending of the Si IIλ6355 at photospheric velocity and another HV absorption component (e.g., an Si II shell at a velocity ~18,000 km s^(–1)) in the outer ejecta, and may be common in other normal SNe Ia. The possible origin of the HV absorption features is briefly discussed.
The Astrophysical Journal | 2008
W. Michael Wood-Vasey; Andrew S. Friedman; Joshua S. Bloom; Malcolm Stuart Hicken; Maryam Modjaz; Robert P. Kirshner; Dan L. Starr; Cullen H. Blake; Emilio E. Falco; Andrew Szentgyorgyi; Peter M. Challis; Stephane Blondin; Kaisey S. Mandel; Armin Rest
We have obtained 1087 NIR (JHKs) measurements of 21 SNe Ia using PAIRITEL, nearly doubling the number of well-sampled NIR SN Ia light curves. These data strengthen the evidence that SNe Ia are excellent standard candles in the NIR, even without correction for optical light-curve shape. We construct fiducial NIR templates for normal SNe Ia from our sample, excluding only the three known peculiar SNe Ia: SN 2005bl, SN 2005hk, and SN 2005ke. The H-band absolute magnitudes in this sample of 18 SNe Ia have an intrinsic rms of only 0.15 mag with no correction for light-curve shape. We found a relationship between the H-band extinction and optical color excess of AH = 0.2E(B − V) . This variation is as small as the scatter in distance modulus measurements currently used for cosmology based on optical light curves after corrections for light-curve shape. Combining the homogeneous PAIRITEL measurements with 23 SNe Ia from the literature, these 41 SNe Ia have standard H-band magnitudes with an rms scatter of 0.16 mag. The good match of our sample with the literature sample suggests there are few systematic problems with the photometry. We present a nearby NIR Hubble diagram that shows no correlation of the residuals from the Hubble line with light-curve properties. Future samples that account for optical and NIR light-curve shapes, absorption, spectroscopic variation, or host-galaxy properties may reveal effective ways to improve the use of SNe Ia as distance indicators. Since systematic errors due to dust absorption in optical bands remain the leading difficulty in the cosmological use of supernovae, the good behavior of SN Ia NIR light curves and their relative insensitivity to reddening make these objects attractive candidates for future cosmological work.
The Astrophysical Journal | 2008
Luc Dessart; Stephane Blondin; Peter J. Brown; Malcolm Stuart Hicken; D. John Hillier; Stephen T. Holland; Stefan Immler; Robert P. Kirshner; Peter A. Milne; Maryam Modjaz; Peter W. A. Roming
We analyze the Type II plateau supernovae (SNe IIP) SN 2005cs and SN 2006bp with the non-LTE model atmosphere code CMFGEN. We fit 13 spectra in the first month for SN 2005cs and 18 for SN 2006bp. Swift ultraviolet photometry and ground-based optical photometry calibrate each spectrum. Our analysis shows that both objects were discovered less than 3 days after they exploded, making these the earliest SN IIP spectra ever studied. They reveal broad and very weak lines from highly ionized fast ejecta with an extremely steep density profile. We identify He II λ4686 emission in the SN 2006bp ejecta. Days later, the spectra resemble the prototypical Type IIP SN 1999em, which had a supergiant-like photospheric composition. Despite the association of SN 2005cs with possible X-ray emission, the emergent UV and optical light comes from the photosphere, not from circumstellar emission. We surmise that the very steep density falloff we infer at early times may be a fossil of the combined actions of the shock wave passage and radiation driving at shock breakout. Based on tailored CMFGEN models, the direct fitting technique and the expanding photosphere method both yield distances and explosion times that agree within a few percent. We derive a distance to NGC 5194, the host of SN 2005cs, of 8.9 ± 0.5 Mpc and 17.5 ± 0.8 Mpc for SN 2006bp in NGC 3953. The luminosity of SN 2006bp is 1.5 times that of SN 1999em and 6 times that of SN 2005cs. Reliable distances to SNe IIP that do not depend on a small range in luminosity provide an independent route to the Hubble constant and improved constraints on other cosmological parameters.