Malene E. Lindholm
Karolinska Institutet
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malene E. Lindholm.
Epigenetics | 2013
Francesco Marabita; Malin Almgren; Malene E. Lindholm; Sabrina Ruhrmann; Fredrik Fagerström-Billai; Maja Jagodic; Carl Johan Sundberg; Tomas J. Ekström; Andrew E. Teschendorff; Jesper Tegnér; David Gomez-Cabrero
The proper identification of differentially methylated CpGs is central in most epigenetic studies. The Illumina HumanMethylation450 BeadChip is widely used to quantify DNA methylation; nevertheless, the design of an appropriate analysis pipeline faces severe challenges due to the convolution of biological and technical variability and the presence of a signal bias between Infinium I and II probe design types. Despite recent attempts to investigate how to analyze DNA methylation data with such an array design, it has not been possible to perform a comprehensive comparison between different bioinformatics pipelines due to the lack of appropriate data sets having both large sample size and sufficient number of technical replicates. Here we perform such a comparative analysis, targeting the problems of reducing the technical variability, eliminating the probe design bias and reducing the batch effect by exploiting two unpublished data sets, which included technical replicates and were profiled for DNA methylation either on peripheral blood, monocytes or muscle biopsies. We evaluated the performance of different analysis pipelines and demonstrated that: (1) it is critical to correct for the probe design type, since the amplitude of the measured methylation change depends on the underlying chemistry; (2) the effect of different normalization schemes is mixed, and the most effective method in our hands were quantile normalization and Beta Mixture Quantile dilation (BMIQ); (3) it is beneficial to correct for batch effects. In conclusion, our comparative analysis using a comprehensive data set suggests an efficient pipeline for proper identification of differentially methylated CpGs using the Illumina 450K arrays.
Epigenetics | 2014
Malene E. Lindholm; Francesco Marabita; David Gomez-Cabrero; Helene Rundqvist; Tomas J. Ekström; Jesper Tegnér; Carl Johan Sundberg
Regular endurance exercise training induces beneficial functional and health effects in human skeletal muscle. The putative contribution to the training response of the epigenome as a mediator between genes and environment has not been clarified. Here we investigated the contribution of DNA methylation and associated transcriptomic changes in a well-controlled human intervention study. Training effects were mirrored by significant alterations in DNA methylation and gene expression in regions with a homogeneous muscle energetics and remodeling ontology. Moreover, a signature of DNA methylation and gene expression separated the samples based on training and gender. Differential DNA methylation was predominantly observed in enhancers, gene bodies and intergenic regions and less in CpG islands or promoters. We identified transcriptional regulator binding motifs of MRF, MEF2 and ETS proteins in the proximity of the changing sites. A transcriptional network analysis revealed modules harboring distinct ontologies and, interestingly, the overall direction of the changes of methylation within each module was inversely correlated to expression changes. In conclusion, we show that highly consistent and associated modifications in methylation and expression, concordant with observed health-enhancing phenotypic adaptations, are induced by a physiological stimulus.
Experimental Physiology | 2016
Malene E. Lindholm; Helene Rundqvist
What is the topic of this review? The role of hypoxia and, more specifically, the role of the hypoxia‐sensitive transcription factor hypoxia‐inducible factor‐1 (HIF‐1) in skeletal muscle adaptation to exercise. What advances does it highlight? Skeletal muscle HIF‐1 induces genes involved in angiogenesis and glycolysis. It may also contribute to an active inhibition of oxygen consumption and aerobic metabolism, features discordant with exercise adaptation. Although acute exercise has been shown to activate HIF‐1 in skeletal muscle, this activation may be blunted after a period of endurance exercise training, possibly through increased expression of the negative regulators of HIF.
The FASEB Journal | 2014
Malene E. Lindholm; Mikael Huss; Beata Werne Solnestam; Sanela Kjellqvist; Joakim Lundeberg; Carl Johan Sundberg
Human skeletal muscle health is important for quality of life and several chronic diseases, including type II diabetes, heart disease, and cancer. Skeletal muscle is a tissue widely used to study mechanisms behind different diseases and adaptive effects of controlled interventions. For such mechanistic studies, knowledge about the gene expression profiles in different states is essential. Since the baseline transcriptome has not been analyzed systematically, the purpose of this study was to provide a deep reference profile of female and male skeletal muscle. RNA sequencing data were analyzed from a large set of 45 resting human muscle biopsies. We provide extensive information on the skeletal muscle transcriptome, including 5 previously unannotated protein‐coding transcripts. Global transcriptional tissue homogeneity was strikingly high, within both a specific muscle and the contralateral leg. We identified >23,000 known isoforms and found >5000 isoforms that differ between the sexes. The female and male transcriptome was enriched for genes associated with oxidative metabolism and protein catabolic processes, respectively. The data demonstrate remarkably high tissue homogeneity and provide a deep and extensive baseline reference for the human skeletal muscle transcriptome, with regard to alternative splicing, novel transcripts, and sex differences in functional ontology.—Lindholm, M. E., Huss, M., Solnestam, B. W., Kjellqvist, S., Lundeberg, J., Sundberg, C. J., The human skeletal muscle transcriptome: sex differences, alternative splicing, and tissue homogeneity assessed with RNA sequencing. FASEB J. 28, 4571–4581 (2014). www.fasebj.org
American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2014
Malene E. Lindholm; Helene Fischer; Lorenz Poellinger; Randall S. Johnson; Thomas Gustafsson; Carl Johan Sundberg; Helene Rundqvist
The transcription factor hypoxia-inducible factor (HIF) has been suggested as a candidate for mediating training adaptation in skeletal muscle. However, recent evidence rather associates HIF attenuation with a trained phenotype. For example, a muscle-specific HIF deletion increases endurance performance, partly through decreased levels of pyruvate dehydrogenase kinase 1 (PDK-1). HIF activity is regulated on multiple levels: modulation of protein stability, transactivation capacity, and target gene availability. Prolyl hydroxylases (PHD1-3) induces HIF degradation, whereas factor-inhibiting HIF (FIH) and the histone deacetylase sirtuin-6 (SIRT6) repress its transcriptional activity. Together, these negative regulators introduce a mechanism for moderating HIF activity in vivo. We hypothesized that long-term training induces their expression. Negative regulators of HIF were explored by comparing skeletal muscle tissue from moderately active individuals (MA) with elite athletes (EA). In elite athletes, expression of the negative regulators PHD2 (MA 73.54 ± 9.54, EA 98.03 ± 6.58), FIH (MA 4.31 ± 0.25, EA 30.96 ± 7.99) and SIRT6 (MA 0.24 ± 0.07, EA 11.42 ± 2.22) were all significantly higher, whereas the response gene, PDK-1 was lower (MA 0.12 ± 0.03, EA 0.04 ± 0.01). Similar results were observed in a separate 6-wk training study. In vitro, activation of HIF in human primary muscle cell culture by PHD inactivation strongly induced PDK-1 (0.84 ± 0.12 vs 4.70 ± 0.63), providing evidence of a regulatory link between PHD activity and PDK-1 levels in a relevant model system. Citrate synthase activity, closely associated with aerobic exercise adaptation, increased upon PDK-1 silencing. We suggest that training-induced negative regulation of HIF mediates the attenuation of PDK-1 and contributes to skeletal muscle adaptation to exercise.
BMC Genomics | 2015
Cecilia Lindskog; Jerker Linné; Linn Fagerberg; Björn M. Hallström; Carl Johan Sundberg; Malene E. Lindholm; Mikael Huss; Caroline Kampf; Howard Choi; David A. Liem; Peipei Ping; Leif Väremo; Adil Mardinoglu; Jens Nielsen; E. L. Larsson; Fredrik Pontén; Mathias Uhlén
BackgroundTo understand cardiac and skeletal muscle function, it is important to define and explore their molecular constituents and also to identify similarities and differences in the gene expression in these two different striated muscle tissues. Here, we have investigated the genes and proteins with elevated expression in cardiac and skeletal muscle in relation to all other major human tissues and organs using a global transcriptomics analysis complemented with antibody-based profiling to localize the corresponding proteins on a single cell level.ResultsOur study identified a comprehensive list of genes expressed in cardiac and skeletal muscle. The genes with elevated expression were further stratified according to their global expression pattern across the human body as well as their precise localization in the muscle tissues. The functions of the proteins encoded by the elevated genes are well in line with the physiological functions of cardiac and skeletal muscle, such as contraction, ion transport, regulation of membrane potential and actomyosin structure organization. A large fraction of the transcripts in both cardiac and skeletal muscle correspond to mitochondrial proteins involved in energy metabolism, which demonstrates the extreme specialization of these muscle tissues to provide energy for contraction.ConclusionsOur results provide a comprehensive list of genes and proteins elevated in striated muscles. A number of proteins not previously characterized in cardiac and skeletal muscle were identified and localized to specific cellular subcompartments. These proteins represent an interesting starting point for further functional analysis of their role in muscle biology and disease.
PLOS Genetics | 2016
Malene E. Lindholm; Stefania Giacomello; Beata Werne Solnestam; Helene Fischer; Mikael Huss; Sanela Kjellqvist; Carl Johan Sundberg
Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity.
Nature Communications | 2018
Christopher DeBoever; Yosuke Tanigawa; Malene E. Lindholm; Greg McInnes; Adam Lavertu; Erik Ingelsson; Chris Chang; Euan A. Ashley; Carlos Bustamante; Mark J. Daly; Manuel A. Rivas
Protein-truncating variants can have profound effects on gene function and are critical for clinical genome interpretation and generating therapeutic hypotheses, but their relevance to medical phenotypes has not been systematically assessed. Here, we characterize the effect of 18,228 protein-truncating variants across 135 phenotypes from the UK Biobank and find 27 associations between medical phenotypes and protein-truncating variants in genes outside the major histocompatibility complex. We perform phenome-wide analyses and directly measure the effect in homozygous carriers, commonly referred to as “human knockouts,” across medical phenotypes for genes implicated as being protective against disease or associated with at least one phenotype in our study. We find several genes with strong pleiotropic or non-additive effects. Our results illustrate the importance of protein-truncating variants in a variety of diseases.Protein-truncating variants (PTVs) are predicted to significantly affect a gene’s function and, thus, human traits. Here, DeBoever et al. systematically analyze PTVs in more than 300,000 individuals across 135 phenotypes and identify 27 associations between PTVs and medical conditions.
Contemporary clinical trials communications | 2018
Anna Wiik; Daniel P. Andersson; Torkel B. Brismar; Setareh Chanpen; Cecilia Dhejne; Tomas J. Ekström; John N. Flanagan; Mats Holmberg; Juha Kere; Mats Lilja; Malene E. Lindholm; Tommy R. Lundberg; Eva Maret; Michael Melin; Sofie M. Olsson; Eric Rullman; Kerstin Wåhlén; Stefan Arver; Thomas Gustafsson
Background Although the divergent male and female differentiation depends on key genes, many biological differences seen in men and women are driven by relative differences in estrogen and testosterone levels. Gender dysphoria denotes the distress that gender incongruence with the assigned sex at birth may cause. Gender-affirming treatment includes medical intervention such as inhibition of endogenous sex hormones and subsequent replacement with cross-sex hormones. The aim of this study is to investigate consequences of an altered sex hormone profile on different tissues and metabolic risk factors. By studying subjects undergoing gender-affirming medical intervention with sex hormones, we have the unique opportunity to distinguish between genetic and hormonal effects. Methods The study is a single center observational cohort study conducted in Stockholm, Sweden. The subjects are examined at four time points; before initiation of treatment, after endogenous sex hormone inhibition, and three and eleven months following sex hormone treatment. Examinations include blood samples, skeletal muscle-, adipose- and skin tissue biopsies, arteriography, echocardiography, carotid Doppler examination, whole body MRI, CT of muscle and measurements of muscle strength. Results The primary outcome measure is transcriptomic and epigenomic changes in skeletal muscle. Secondary outcome measures include transcriptomic and epigenomic changes associated with metabolism in adipose and skin, muscle strength, fat cell size and ability to release fatty acids from adipose tissue, cardiovascular function, and body composition. Conclusions This study will provide novel information on the role of sex hormone treatment in skeletal muscle, adipose and skin, and its relation to cardiovascular and metabolic disease.
Archive | 2015
Malene E. Lindholm; Stefania Giacomello; Beata Werne Solnestam; H. Fischer; Sanela Kjellqvist; Mikael Huss; Carl Johan Sundberg