Małgorzata Beręsewicz
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Małgorzata Beręsewicz.
The FASEB Journal | 2005
Joanna Dłużniewska; Anna Sarnowska; Małgorzata Beręsewicz; I.P. Johnson; Surjit Kaila Srai; Bala Ramesh; Geoffrey Goldspink; Dariusz C. Górecki; Barbara Zabłocka
The ischemic stroke is the third leading cause of death in developed countries. The C‐terminal peptide of mechano‐growth factor (MGF), an alternatively spliced variant of insulin‐like growth factor 1 (IGF‐1), was found to function independently from the rest of the molecule and showed a neuroprotective effect in vivo and in vitro. In vivo, in a gerbil model of transient brain ischemia, treatment with the synthetic MGF C‐terminal peptide provided very significant protection to the vulnerable neurons. In the same model, ischemia evoked increased expression of endogenous MGF in the ischemia‐resistant hippocampal neurons, suggesting that the endogenous MGF might have an important neuroprotective function. In an in vitro organotypic hippocampal culture model of neurodegeneration, the synthetic peptide was as potent as the full‐length IGF‐1 while its effect lasted significantly longer than that of recombinant IGF‐1. While two peptides showed an additive effect, the neuroprotective action of the C‐terminal MGF was independent from the IGF‐1 receptor, indicating a new mode of action for this molecule. Although MGF is known for its regenerative capability in skeletal muscle, our findings demonstrate for the first time a neuroprotective role against ischemia for this specific IGF‐1 isoform. Therefore, the C‐terminal MGF peptide has a potential to be developed into a therapeutic modality for the prevention of neuronal damage.
Biochemical and Biophysical Research Communications | 2010
Piotr Bednarczyk; Joanna E. Kowalczyk; Małgorzata Beręsewicz; Krzysztof Dołowy; Adam Szewczyk; Barbara Zabłocka
Transient cerebral ischemia is known to induce endogenous mechanisms that can prevent or delay neuronal injury, such as the activation of mitochondrial potassium channels. However, the molecular mechanism of this effect remains unclear. In this study, the single-channel activity was measured using the patch-clamp technique of the mitoplasts isolated from gerbil hippocampus. In 70% of all patches, a potassium-selective current with the properties of a voltage-gated Kv-type potassium channel was recorded with mean conductance 109+/-6pS in a symmetrical solution. The channel was blocked at negative voltages and irreversibly by margatoxin, a specific Kv1.3 channel inhibitor. The ATP/Mg(2+) complex and Ca(2+) ions had no effect on channel activity. Additionally, agitoxin-2, a potent inhibitor of voltage-gated potassium channels, had no effect on mitochondrial channel activity. This observation suggests that in contrast to surface membrane channels, the mitochondrial voltage-gated potassium channel could have a different molecular structure with no affinity to agitoxin-2. Western blots of gerbil hippocampal mitochondria and immunohistochemistry on gerbil brain sections confirmed the expression of the Kv1.3 protein in mitochondria. Our findings indicate that gerbil brain mitochondria contain a voltage-gated potassium channel that can influence the function of mitochondria in physiological and pathological conditions and that has properties similar to the surface membrane Kv1.3 channel.
Neurochemistry International | 2007
Dariusz C. Górecki; Małgorzata Beręsewicz; Barbara Zabłocka
Insulin-like growth factor I (IGF-1) is a peptide synthesized in response to growth hormone stimulation. While most of the circulating IGF-1 comes from the liver, it can also be produced in other tissues and both its expression and processing undergo tissue-specific regulation. The predominant form, IGF-1Ea is a circulating factor while two others, IGF-1Eb and IGF-1Ec (MGF), are mostly expressed in different tissues or in response to various stimuli and show some preferences with respect to the signal transduction pathways they activate. In skeletal muscle specific forms of IGF-1 play a role in development and growth and in addition to these physiological roles IGF-1 functions in the damaged muscle. IGF-1 is also important for the developing and adult brain and can reduce neuronal death caused by different types of injuries. Like many other peptide hormones IGF-1 originates from a precursor pro-hormone that undergoes extensive post-translational modifications. Processing liberates the mature peptide, which acts via the specific IGF-1 receptor but additional short peptides can arise from both N- and C-termini of various IGF-1 isoforms. These derivatives function as autonomous biologically active peptides and extremely potent neuroprotective agents. Their biological effects are independent of the activation of the IGF-1 receptor. Unfortunately, little is known about their mechanism(s) of action. Likewise, the existence of the endogenous production and wider biological effects of these short peptides are uncertain. However, considering the difference in the modes of action it might be possible to dissociate the unwanted and potentially dangerous mitogenic activity of the full-length IGF-1 exerted via its receptor from the neuroprotective effects of short derivatives mediated through different pathways. Such small molecules show good penetration through the blood brain barrier, can be inexpensively manufactured and modified to increase their stability. Therefore, they are good candidates for development into a neuroprotective therapeutic modality.
International Journal of Developmental Neuroscience | 2010
Małgorzata Beręsewicz; Monika Majewska; Dorota Makarewicz; Steven Vayro; Barbara Zabłocka; Dariusz C. Górecki
Insulin‐like growth factor‐1 (IGF‐1) is a multifunctional peptide of which numerous isoforms exist. The predominant form, IGF‐1Ea is involved in physiological processes while IGF‐1Ec (mechano‐growth factor, MGF) is expressed in response to a different set of stimuli. We have identified specific changes in the expression patterns of these IGF‐1 variants in brain development in normal rats and following neonatal hypoxia–ischaemia (HI). Both IGF‐1Ea and IGF‐1Ec are expressed during normal postnatal brain development, albeit with highly specific temporal distributions. In contrast, HI produced increased and prolonged expression of the IGF‐1Ec isoform only. Importantly, hypoxia alone stimulated the expression of IGF‐1Ec as well. Thus, IGF‐1Ec may play a role in HI pathology. Neonatal hypoxia–ischaemia occurs in approximately 1:4000–1:10,000 newborns and causes neurological deficits in ∼75% of those affected. Unfortunately, no specific treatment is available. IGF‐1 is known to have neuroprotective activity and its IGF‐1Ec variant appears to be an endogenous protective factor in hypoxia–ischaemia. Therefore, IGF‐1Ec could potentially be developed into a therapeutic modality for the attenuation or prevention of neuronal damage in this and related disorders.
Neurochemistry International | 2009
Joanna E. Kowalczyk; Małgorzata Beręsewicz; Barbara Gajkowska; Barbara Zabłocka
Recent findings support the idea that mitochondrial integrity plays an important role in the propagation of excitotoxic ischemic signal and PKC is implicated in the regulation of mitochondrial membranes properties. One of the targets of PKC delta is phospholipid scramblase 3 (PLSCR3), an enzyme responsible for cardiolipin translocation from the inner to outer mitochondrial membrane. To get an insight into in vivo mechanism by which PKC delta mediates ischemia/reperfusion injury of hippocampal neurons, we examined the effects of transient brain ischemia in gerbil on association of PKC delta with mitochondria isolated from ischemia-vulnerable (CA1) and ischemia-resistant regions, and interactions between PKC delta and PLSCR3. Postischemic, biphasic and brain region-specific translocation of PKC delta to mitochondria was observed. First peak was at 30-60 min of reperfusion and the second was observed after 72-96 h following ischemia. PKC delta was translocated to mitochondria only in CA1 region. The PLSCR3 mRNA and protein was detected in brain by RT-PCR and sequence analysis, Western blotting and immunocytochemistry in electron microscopy (EM). Co-immunoprecipitation and double-labeled immuno-EM showed association of PKC delta and PLSCR3 in postischemic CA1 mitochondria. Additionally, the amount of tBid associated with mitochondria was elevated 96 h following ischemia. Our data suggest that in the postischemic brain PKC delta co-localizes with PLSCR3 in mitochondria and this event might influence the mitochondrial membranes architecture and delayed neurons degeneration.
Neurochemistry International | 2006
Małgorzata Beręsewicz; Joanna E. Kowalczyk; Barbara Zabłocka
Previously we have shown that the biphasic efflux of mitochondrial protein cytochrome c to cytoplasm is one of the important events of the delayed postichemic neuronal death. We concluded that early and transient appearance of cytochrome c in cytoplasm of cells recovering after ischemia was decisive for initiation of the pathological signaling cascade leading to neuronal death, but the precise mechanism remained unknown. In vitro cytochrome c was identified as a messenger that coordinates mitochondrial-endoplasmatic reticulum interactions that drive apoptosis. Here we show that in vivo cytochrome c interacts with inositol (1,4,5) trisphosphate receptor type 1 in gerbil hippocampus subjected to transient brain ischemia and short reperfusion. Moreover, cytochrome c binds also to ryanodine receptor type 2, the role of which in postischemic neuronal death is suggested. The complexes could be coimmunoprecipitated by antibodies against any of the two proteins. Our data verified that the mechanism observed in vitro applies to the pathological in vivo situation.
Biochimica et Biophysica Acta | 2010
Wojciech Michowski; Roberta Ferretti; Marta B. Wisniewska; Mateusz Ambrozkiewicz; Małgorzata Beręsewicz; Federica Fusella; Anna Skibinska-Kijek; Barbara Zabłocka; Mara Brancaccio; Guido Tarone; Jacek Kuznicki
Morgana/CHP-1 (CHORD containing protein-1) has been recently shown to be necessary for proper cell divisions. However, the presence of the protein in postmitotic tissues such as brain and striated muscle suggests that morgana/CHP-1 has additional cellular functions. Here we show that morgana/CHP-1 behaves like an HSP90 co-chaperone and possesses an independent molecular chaperone activity towards denatured proteins. The expression time profile of morgana/Chp-1 in NIH3T3 cells in response to heat stress is similar to that of Hsp70, a classical effector of Heat Shock Factor-1 mediated stress response. Moreover, overexpression of morgana/CHP-1 in NIH3T3 cells leads to the increased stress resistance of the cells. Interestingly, morgana/Chp-1 upregulation in response to transient global brain ischemia lasts longer in ischemia-resistant regions of the gerbil hippocampus than in vulnerable ones, suggesting the involvement of morgana/CHP-1 in natural protective mechanisms in vivo.
PLOS ONE | 2015
Maria Kawalec; Anna Boratyńska-Jasińska; Małgorzata Beręsewicz; Dorota Dymkowska; Krzysztof Zabłocki; Barbara Zabłocka
Mitofusin 2 (Mfn2), mitochondrial outer membrane protein which is involved in rearrangement of these organelles, was first described in pathology of hypertension and diabetes, and more recently much attention is paid to its functions in Charcot-Marie-Tooth type 2A neuropathy (CMT2A). Here, cellular energy metabolism was investigated in mouse embryonic fibroblasts (MEF) differing in the presence of the Mfn2 gene; control (MEFwt) and with Mfn2 gene depleted MEFMfn2-/-. These two cell lines were compared in terms of various parameters characterizing mitochondrial bioenergetics. Here, we have shown that relative rate of proliferation of MEFMfn2-/- cells versus control fibroblasts depend on serum supplementation of the growth media. Moreover, MEFMfn2-/- cells exhibited significantly increased respiration rate in comparison to MEFwt, regardless of serum supplementation of the medium. This effect was correlated with increased level of mitochondrial markers (TOM20 and NAO) as well as mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) protein levels and unchanged total ATP content. Interestingly, mitochondrial DNA content in MEFMfn2-/- cells was not reduced. Fundamentally, these results are in contrast to a commonly accepted belief that mitofusin 2 deficiency inevitably results in debilitation of mitochondrial energy metabolism. However, we suggest a balance between negative metabolic consequences of mitofusin 2 deficiency and adaptive processes exemplified by increased level of PGC-1α and TFAM transcription factor which prevent an excessive depletion of mtDNA and severe impairment of cell metabolism.
Mitochondrion | 2012
Joanna E. Kowalczyk; Maria Kawalec; Małgorzata Beręsewicz; Janusz Dębski; Michal Dadlez; Barbara Zabłocka
PKC is implicated in the regulation of mitochondrial metabolism. We examined the association of PKCβ with mitochondria and followed postischemic changes in its amount in mitochondria isolated from ischemia-vulnerable (CA1) and ischemia-resistant (CA2-4,DG) hippocampus in gerbil model of transient brain ischemia. Our observations suggest that transient ischemic episode induces a significant, rapid and long lasting increase of PKCβ in mitochondria in CA2-4,DG, which may bespeak neuroprotection. In organotypic hippocampal culture (OHC) model of neurodegeneration, PKCβ inhibition imposed over NMDA toxicity extended the death area beyond the CA1. These results suggest that PKCβ might have a protective effect against excitotoxic damage in rat OHC. The pull-down method and LC-MS/MS analysis revealed mitochondrial proteins that can bind directly with PKCβΙ. The proteins were parts of i) mitochondrial redox carriers forming the electron transport chain including ATP synthase and ii) MPTP: ANT and creatine kinase. PKCβ acting through mitochondrial proteins could play a role in protecting the cells from death by e.g. influencing ROS and ATP production after ischemia in CA2-4,DG region of the hippocampus.
PLOS ONE | 2017
Małgorzata Beręsewicz; Anna Boratyńska-Jasińska; Łukasz Charzewski; Maria Kawalec; Dagmara Kabzińska; Andrzej Kochański; Krystiana A. Krzyśko; Barbara Zabłocka; Ruben Artero
Charcot-Marie-Tooth disease type 2A (CMT2A) is an autosomal dominant axonal peripheral neuropathy caused by mutations in the mitofusin 2 gene (MFN2). Mitofusin 2 is a GTPase protein present in the outer mitochondrial membrane and responsible for regulation of mitochondrial network architecture via the fusion of mitochondria. As that fusion process is known to be strongly dependent on the GTPase activity of mitofusin 2, it is postulated that the MFN2 mutation within the GTPase domain may lead to impaired GTPase activity, and in turn to mitochondrial dysfunction. The work described here has therefore sought to verify the effects of MFN2 mutation within its GTPase domain on mitochondrial and endoplasmic reticulum morphology, as well as the mtDNA content in a cultured primary fibroblast obtained from a CMT2A patient harboring a de novo Arg274Trp mutation. In fact, all the parameters studied were affected significantly by the presence of the mutant MFN2 protein. However, using the stable model for mitofusin 2 obtained by us, we were next able to determine that the Arg274Trp mutation does not impact directly upon GTP binding. Such results were also confirmed for GTP-hydrolysis activity of MFN2 protein in patient fibroblast. We therefore suggest that the biological malfunctions observable with the disease are not consequences of impaired GTPase activity, but rather reflect an impaired contribution of the GTPase domain to other MFN2 activities involving that region, for example protein-protein interactions.