Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Małgorzata Brindell is active.

Publication


Featured researches published by Małgorzata Brindell.


Coordination Chemistry Reviews | 2002

Laser flash photolysis as tool in the elucidation of the nitric oxide binding mechanism to metallobiomolecules

Alicja Wanat; Maria Wolak; Łukasz Orzeł; Małgorzata Brindell; R. van Eldik; G. Stochel

The article presents a sampling of mechanistic studies on nitric oxide binding to metallobiomolecules. The main emphasis falls on the application of ambient and high pressure laser flash photolysis techniques in the elucidation of the mechanism of the reaction of NO with metals in active centres of biomolecules and complexes of potential medicinal application.


Journal of Inorganic Biochemistry | 2012

Interaction of apo-transferrin with anticancer ruthenium complexes NAMI-A and its reduced form.

Olga Mazuryk; Katarzyna Kurpiewska; Krzysztof Lewiński; Grażyna Stochel; Małgorzata Brindell

NAMI-A i.e. (ImH)[trans-RuCl(4)(DMSO)(Im)] (where Im is imidazole) is a ruthenium(III) complex with promising antimetastatic activity, which has been classified for II phase clinical trial. In this study, its binding properties toward apo-transferrin (apo-Tf) with regard to its hydrolytic and redox behavior are systematically investigated by the use of fluorescence spectroscopy. The reaction of NAMI-A and its reduced form with apo-Tf is proceeded by formation of aqua derivatives and the presence of at least one labile aqua ligand is sufficient to form adducts. It is found that presence of bicarbonate is not necessary for interaction of studied ruthenium complexes with apo-Tf. The calculated association constants for both NAMI-A and its reduced form are very similar with the values of 1.28 × 10(4)M(-1) and 1.36 × 10(4)M(-1) at 37 °C, respectively however, the reduced derivatives reach the equilibrium ca. 8-10 times slower. The percentage of ruthenium content in protein fractions separated from protein-unbounded ruthenium by using FPLC (fast protein liquid chromatography) method is rather high and depends on redox state of the complex, for most samples is found higher for reduced species.


Chemistry: A European Journal | 2014

Combined Experimental and Theoretical Study on the Reactivity of Compounds I and II in Horseradish Peroxidase Biomimetics

Li Ji; Alicja Franke; Małgorzata Brindell; Maria Oszajca; Achim Zahl; Rudi van Eldik

For the exploration of the intrinsic reactivity of two key active species in the catalytic cycle of horseradish peroxidase (HRP), Compound I (HRP-I) and Compound II (HRP-II), we generated in situ [Fe(IV) O(TMP(+.) )(2-MeIm)](+) and [Fe(IV) O(TMP)(2-MeIm)](0) (TMP=5,10,15,20-tetramesitylporphyrin; 2-MeIm=2-methylimidazole) as biomimetics for HRP-I and HRP-II, respectively. Their catalytic activities in epoxidation, hydrogen abstraction, and heteroatom oxidation reactions were studied in acetonitrile at -15 °C by utilizing rapid-scan UV/Vis spectroscopy. Comparison of the second-order rate constants measured for the direct reactions of the HRP-I and HRP-II mimics with the selected substrates clearly confirmed the outstanding oxidizing capability of the HRP-I mimic, which is significantly higher than that of HRP-II. The experimental study was supported by computational modeling (DFT calculations) of the oxidation mechanism of the selected substrates with the involvement of quartet and doublet HRP-I mimics ((2,4) Cpd I) and the closed-shell triplet spin HRP-II model ((3) Cpd II) as oxidizing species. The significantly lower activation barriers calculated for the oxidation systems involving (2,4) Cpd I than those found for (3) Cpd II are in line with the much higher oxidizing efficiency of the HRP-I mimic proven in the experimental part of the study. In addition, the DFT calculations show that all three reaction types catalyzed by HRP-I occur on the doublet spin surface in an effectively concerted manner, whereas these reactions may proceed in a stepwise mechanism with the HRP-II mimic as oxidant. However, the high desaturation or oxygen rebound barriers during CH bond activation processes by the HRP-II mimic predict a sufficient lifetime for the substrate radical formed through hydrogen abstraction. Thus, the theoretical calculations suggest that the dissociation of the substrate radical may be a more favorable pathway than desaturation or oxygen rebound processes. Importantly, depending on the electronic nature of the oxidizing species, that is, (2,4) Cpd I or (3) Cpd II, an interesting region-selective conversion phenomenon between sulfoxidation and H-atom abstraction was revealed in the course of the oxidation reaction of dimethylsulfide. The combined experimental and theoretical study on the elucidation of the intrinsic reactivity patterns of the HRP-I and HRP-II mimics provides a valuable tool for evaluating the particular role of the HRP active species in biological systems.


Journal of Biological Inorganic Chemistry | 2015

Impact of low‑ and high‑molecular‑mass components of human serum on NAMI‑A binding to transferrin

K. Śpiewak; Małgorzata Brindell

Imidazolium trans-tetrachloridodimethylsulfoxideimidazolruthenate(III), NAMI-A, a novel antimetastatic ruthenium complex was investigated towards affinity to transferrin (Tf), whether Tf–Ru adducts might be formed after its intravenous injection. Studies were focused on the holotransferrin due to its preferential binding to transferrin receptor. Here, we showed that holotransferrin is able to bind NAMI-A as readily as apotransferrin. The simulation of biological conditions of human serum performed by application of simplified serum models allowed to analyse ruthenium distribution between transferrin and albumin. The presence of physiological concentration of albumin (ca. 18-fold excess over Tf) resulted in a twofold decrease of ruthenium binding to Tf. Interestingly, the introducing of low-molecular-mass components of serum dramatically increased the ruthenation of Tf. Intermolecular competition binding studies between transferrin and albumin showed that both proteins bound similar amount of ruthenium species. Investigation of NAMI-A binding to Tf in human serum showed that this protein was not the major binding partner for Ru complex. However, in spite of many competing proteins still the ruthenation of Tf was observed. The lack of free Ru species (protein unbounded) after incubation with human serum allowed to make an assumption of high affinity of NAMI-A towards serum proteins.


Inorganic Chemistry | 2014

Temperature and pressure effects on C-H abstraction reactions involving compound I and II mimics in aqueous solution.

Maria Oszajca; Alicja Franke; Agnieszka Drzewiecka-Matuszek; Małgorzata Brindell; Grażyna Stochel; Rudi van Eldik

The presented results cover a comparative mechanistic study on the reactivity of compound (Cpd) I and II mimics of a water-soluble iron(III) porphyrin, [meso-tetrakis(2,4,6-trimethyl-3-sulfonatophenyl)porphinato]iron(III), Fe(III)(TMPS). The acidity of the aqueous medium strongly controls the chemical nature and stability of the high-valent iron(IV) oxo species. Reactivity studies were performed at pH 5 and 10, where the Cpd I and II mimics are stabilized as the sole oxidizing species, respectively. The contributions of ΔH(‡) and ΔS(‡) to the free energy of activation (ΔG(‡)) for the oxidation of 4-methoxybenzaldehyde (4-MB-ald), 4-methoxybenzyl alcohol (4-MB-alc), and 1-phenylethanol (1-PhEtOH) by the Cpd I and II mimics were determined. The relatively large contribution of the ΔH(‡) term in comparison to the -TΔS(‡) term to ΔG(‡) for reactions involving the Cpd II mimic indicates that the oxidation of selected substrates by this oxidizing species is clearly an enthalpy-controlled process. In contrast, different results were found for reactions with application of the Cpd I mimic. Depending on the nature of the substrate, the reaction at room temperature can be entropy-controlled, as found for the oxidation of 4-MB-alc, or enthalpy-controlled, as found for 1-PhEtOH. Importantly, for the first time, activation volumes (ΔV(‡)) for the oxidation of selected substrates by both reactive intermediates could be determined. Positive values of ΔV(‡) were found for reactions with the Cpd II mimic and slightly negative ones for reactions with the Cpd II mimic. The results are discussed in the context of the oxidation mechanism conducted by the Cpd I and II mimics.


Chemistry: A European Journal | 2014

Mechanistic Insight into Peroxo‐Shunt Formation of Biomimetic Models for Compound II, Their Reactivity toward Organic Substrates, and the Influence of N‐Methylimidazole Axial Ligation

Maria Oszajca; Agnieszka Drzewiecka-Matuszek; Alicja Franke; Dorota Rutkowska-Zbik; Małgorzata Brindell; M. Witko; Grażyna Stochel; Rudi van Eldik

High-valent iron-oxo species have been invoked as reactive intermediates in catalytic cycles of heme and nonheme enzymes. The studies presented herein are devoted to the formation of compound II model complexes, with the application of a water soluble (TMPS)Fe(III)(OH) porphyrin ([meso-tetrakis(2,4,6-trimethyl-3-sulfonatophenyl)porphinato]iron(III) hydroxide) and hydrogen peroxide as oxidant, and their reactivity toward selected organic substrates. The kinetics of the reaction of H2O2 with (TMPS)Fe(III)(OH) was studied as a function of temperature and pressure. The negative values of the activation entropy and activation volume for the formation of (TMPS)Fe(IV)=O(OH) point to the overall associative nature of the process. A pH-dependence study on the formation of (TMPS)Fe(IV)=O(OH) revealed a very high reactivity of OOH(-) toward (TMPS)Fe(III)(OH) in comparison to H2O2. The influence of N-methylimidazole (N-MeIm) ligation on both the formation of iron(IV)-oxo species and their oxidising properties in the reactions with 4-methoxybenzyl alcohol or 4-methoxybenzaldehyde, was investigated in detail. Combined experimental and theoretical studies revealed that among the studied complexes, (TMPS)Fe(III)(H2O)(N-MeIm) is highly reactive toward H2O2 to form the iron(IV)-oxo species, (TMPS)Fe(IV)=O(N-MeIm). The latter species can also be formed in the reaction of (TMPS)Fe(III)(N-MeIm)2 with H2O2 or in the direct reaction of (TMPS)Fe(IV)=O(OH) with N-MeIm. Interestingly, the kinetic studies involving substrate oxidation by (TMPS)Fe(IV)=O(OH) and (TMPS)Fe(IV)=O(N-MeIm) do not display a pronounced effect of the N-MeIm axial ligand on the reactivity of the compound II mimic in comparison to the OH(-) substituted analogue. Similarly, DFT computations revealed that the presence of an axial ligand (OH(-) or N-MeIm) in the trans position to the oxo group in the iron(IV)-oxo species does not significantly affect the activation barriers calculated for C-H dehydrogenation of the selected organic substrates.


Biochimica et Biophysica Acta | 2008

Application of high pressure laser flash photolysis in studies on selected hemoprotein reactions.

Małgorzata Brindell; Iwona Stawoska; Łukasz Orzeł; Przemysław Łabuz; Grażyna Stochel; Rudi van Eldik

This article focuses on the application of high pressure laser flash photolysis for studies on selected hemoprotein reactions with the objective to establish details of the underlying reaction mechanisms. In this context, particular attention is given to the reactions of small molecules such as dioxygen, carbon monoxide, and nitric oxide with selected hemoproteins (hemoglobin, myoglobin, neuroglobin and cytochrome P450(cam)), as well as to photo-induced electron transfer reactions occurring in hemoproteins (particularly in various types of cytochromes). Mechanistic conclusions based on the interpretation of the obtained activation volumes are discussed in this account.


New Journal of Chemistry | 2014

Interaction of the NAMI-A complex with nitric oxide under physiological conditions

Maria Oszajca; Ewa Kuliś; Grażyna Stochel; Małgorzata Brindell

The interference of NAMI-A ([ImH][RuCl4(Im)(DMSO)], Im – imidazole, DMSO – dimethyl sulfoxide) with the metabolism of nitric oxide (NO) has been proposed as one of the possible pathways of the antimetastatic activity of this complex. With regard to this observation we present herein detailed spectrophotometric studies on interaction of the NAMI-A complex with NO. The reactivity of NAMI-A toward NO has been studied in aqueous solution under physiological-like conditions (pH = 7.4, [NaCl] = 0.1 M, T = 37 °C). The ability of NAMI-A as well as its hydrolytic products to bind NO has been confirmed spectrophotometrically and separation of reaction products was performed with application of the HPLC technique. The relatively slow NO binding requires opening up a coordination site in the parent NAMI-A complex via simultaneously occurring hydrolysis. The studies in the presence of albumin showed that NO can coordinate to NAMI-A–albumin adducts. The capability of nitrosyl derivatives (Ru2+–NO+) to undergo reduction of the NO+ moiety in the presence of ascorbic acid, glutathione and dithionite has been studied with application of the NO sensor. The obtained results showed that under selected conditions, nitrosyl complexes cannot liberate nitric oxide via one electron reduction using applied reductants. This is due to the relatively low reduction potential of the NO+ group bound to Ru(II) (−0.69 V), determined in electrochemical studies.


Journal of Chromatography A | 2013

Separation of iron-free and iron-saturated forms of transferrin and lactoferrin via capillary electrophoresis performed in fused-silica and neutral capillaries.

Paweł Mateusz Nowak; Klaudyna Śpiewak; Małgorzata Brindell; Michał Woźniakiewicz; Grażyna Stochel; Paweł Kościelniak

A capillary electrophoresis-based method for the cost-effective and high efficient separation of iron-free and iron-saturated forms of two members of transferrin family: transferrin and lactoferrin has been developed. The proposed qualitative method relying on the SDS application allowed us to separate iron-free and iron-saturated forms of these proteins, as well as human serum albumin, used as an internal standard. Owing to the distinct migration times under established conditions, the combination of transferrin and lactoferrin assays within a single analytical procedure was feasible. The performance of the method using a fused-silica capillary has been compared with the results obtained using the same method but performed with the use of a neutral capillary of the same dimensions. Neutral capillary has been used as an alternative, since the comparable resolution has been achieved with a concomitant reduction of the electroosmotic flow. Despite of this fact, the migration of analytes occurred with similar velocity but in opposite order, due to the reverse polarity application. A quantitative method employing fused-silica capillary for iron saturation study has been also developed, to evaluate the iron saturation in commercial preparations of lactoferrin.


Inorganic Chemistry | 2011

Mechanistic studies on the reactions of cyanide with a water-soluble Fe(III) porphyrin and their effect on the binding of NO.

Maria Oszajca; Alicja Franke; Małgorzata Brindell; G. Stochel; Rudi van Eldik

The reaction of the water-soluble Fe(III)(TMPS) porphyrin with CN(-) in basic solution leads to the stepwise formation of Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2). The kinetics of the reaction of CN(-) with Fe(III)(TMPS)(CN)(H(2)O) was studied as a function of temperature and pressure. The positive value of the activation volume for the formation of Fe(III)(TMPS)(CN)(2) is consistent with the operation of a dissociatively activated mechanism and confirms the six-coordinate nature of the monocyano complex. A good agreement between the rate constants at pH 8 and 9 for the formation of the dicyano complex implies the presence of water in the axial position trans to coordinated cyanide in the monocyano complex and eliminates the existence of Fe(III)(TMPS)(CN)(OH) under the selected reaction conditions. Both Fe(III)(TMPS)(CN)(H(2)O) and Fe(III)(TMPS)(CN)(2) bind nitric oxide (NO) to form the same nitrosyl complex, namely, Fe(II)(TMPS)(CN)(NO(+)). Kinetic studies indicate that nitrosylation of Fe(III)(TMPS)(CN)(2) follows a limiting dissociative mechanism that is supported by the independence of the observed rate constant on [NO] at an appropriately high excess of NO, and the positive values of both the activation parameters ΔS(‡) and ΔV(‡) found for the reaction under such conditions. The relatively small first-order rate constant for NO binding, namely, (1.54 ± 0.01) × 10(-2) s(-1), correlates with the rate constant for CN(-) release from the Fe(III)(TMPS)(CN)(2) complex, namely, (1.3 ± 0.2) × 10(-2) s(-1) at 20 °C, and supports the proposed nitrosylation mechanism.

Collaboration


Dive into the Małgorzata Brindell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Konrad Szaciłowski

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga Mazuryk

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alicja Franke

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge