Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Małgorzata D. Gaj is active.

Publication


Featured researches published by Małgorzata D. Gaj.


Plant Growth Regulation | 2004

Factors Influencing Somatic Embryogenesis Induction and Plant Regeneration with Particular Reference to Arabidopsis thaliana (L.) Heynh

Małgorzata D. Gaj

The broad applications of somatic embryogenesis, both in basic and applied research, have stimulated studies on the determination of in vitro conditions for the induction of somatic embryos and their conversion into plants. As a result, efficient protocols on SE induction and plant regeneration have recently become available for many plant species, including Arabidopsis thaliana (L.) Heynh., a model plant in genetics and embryogenesis.Studies on factors controlling in vitro plant morphogenesis are highly desirable not only for the development of improved regeneration systems, but also for the analysis of molecular mechanisms underlying plant embryogenesis. This review focuses on the conditions influencing the induction of embryogenic potential in in vitro cultured plant cells. The roles of explant type, endo- and exogenous plant growth regulators and stress factors in the induction of somatic embryogenesis are especially emphasized. Possible mechanisms by which different factors induce or modify embryogenic competence in cultured plant cells are also discussed. Since the production of genetically solid and true-to-type plants is desired, especially for transformation and micropropagation practice, the problem of the genetic characteristics of regenerants, in terms of their chimerism and somaclonal variation, is discussed in some detail.Special consideration is given to A. thaliana– a major model plant species for classical genetics and genomics. Recent availability of efficient embryogenic cultures in this organism makes it possible to benefit from advanced genomic research of Arabidopsis to study plant embryogenesis on the molecular level.


Planta | 2005

Leafy cotyledon genes are essential for induction of somatic embryogenesis of Arabidopsis.

Małgorzata D. Gaj; Shibo Zhang; John J. Harada; Peggy G. Lemaux

The capacity for somatic embryogenesis was studied in lec1, lec2 and fus3 mutants of Arabidopsis thaliana (L.) Heynh. It was found that contrary to the response of wild-type cultures, which produced somatic embryos via an efficient, direct process (65–94% of responding explants), lec mutants were strongly impaired in their embryogenic response. Cultures of the mutants formed somatic embryos at a low frequency, ranging from 0.0 to 3.9%. Moreover, somatic embryos were formed from callus tissue through an indirect route in the lec mutants. Total repression of embryogenic potential was observed in double (lec1 lec2, lec1 fus3, lec2 fus3) and triple (fus3 lec1 lec2) mutants. Additionally, mutants were found to exhibit efficient shoot regenerability via organogenesis from root explants. These results provide evidence that, besides their key role in controlling many different aspects of Arabidopsis zygotic embryogenesis, LEC/FUS genes are also essential for in vitro somatic embryogenesis induction. Furthermore, temporal and spatial patterns of auxin distribution during somatic embryogenesis induction were analyzed using transgenic Arabidopsis plants expressing GUS driven by the DR5 promoter. Analysis of data indicated auxin accumulation was rapid in all tissues of the explants of both wild type and the lec2-1 mutant, cultured on somatic embryogenesis induction medium containing 2,4-D. This observation suggests that loss of embryogenic potential in the lec2 mutant in vitro is not related to the distribution of exogenously applied auxin and LEC genes likely function downstream in auxin-induced somatic embryogenesis.


Plant Cell Tissue and Organ Culture | 2001

Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana

Małgorzata D. Gaj

A simple, rapid and effective system to regenerate Arabidopsis plants via direct somatic embryogenesis has been established. Somatic embryogenesis was induced directly during culture of immature zygotic embryos. The frequency of somatic embryogenesis was strongly influenced by the stage of development of the explants. Explants in different developmental stages were cultured on B5 agar medium containing 5 μM 2,4-dichlorophenoxyacetic acid and the highest frequency (up to 90%) of somatic embryogenesis was observed in zygotic embryos with fully-developed cotyledons. The first somatic embryos developing directly from explant tissue were noticed after 8 days of culture. Somatic embryogenesis of a high frequency (87–96%) was observed in cultures of the all six genotypes tested (Columbia, C-24, RLD, Wassilewskaja, Landsberg erecta and Wilna). Subculture of somatic embryos onto auxin-free medium resulted in their conversion into plants with an average frequency of 79.5%. The regenerates showed normal morphological characteristics and were fertile. All 56 analysed plants displayed a diploid number of chromosomes and two out of 96 (2.1%) tested plants carried a chlorophyll or embryo-lethal mutation.


Planta | 2007

Histological analysis of direct somatic embryogenesis in Arabidopsis thaliana (L.) Heynh

Ewa U. Kurczyńska; Małgorzata D. Gaj; Agnieszka Ujczak; Ewa Mazur

In Arabidopsis the in vitro culture of immature zygotic embryos (IZEs) at a late stage of development, on the solid medium containing synthetic auxin, leads to formation of somatic embryos via direct somatic embryogenesis (DSE). The presented results provide evidence that in IZE cells competent for DSE are located in the protodermis and subprotodermis of the adaxial side of cotyledons and somatic embryos displayed a single- or multicellular origin. Transgenic Arabidopsis lines expressing the GUS reporter gene, driven by the DR5 and LEC2 promoters, were used to analyse the distribution of auxin to mark embryogenic cells in cultured explants and develop somatic embryos. The analysis showed that at the start of the culture auxin was accumulated in all explant tissues, but from the fourth day onwards its location shifted to the protodermis and subprotodermis of the explant cotyledons. In globular somatic embryos auxin was detected in all cells, with a higher concentration in the protodermis, and in the heart stage its activity was mainly displayed in the shoot, root pole and cotyledon primordia. The embryogenic nature of dividing protodermal and subprotodermal cells accumulating auxin was confirmed by high expression of promoter activity of LEC2 in these cells. Analysis of symplasmic tracer (CFDA) distribution indicated symplasmic isolation between tissues engaged in DSE and other parts of an explant. Symplasmic isolation of somatic embryos from the explant was also detected.


Planta | 2013

LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis

Barbara Wójcikowska; Karolina Jaskóła; Przemysław Gąsiorek; Magdalena Meus; Katarzyna Nowak; Małgorzata D. Gaj

The LEAFY COTYLEDON2 (LEC2) transcription factor with a plant-specific B3 domain plays a central role in zygotic and somatic embryogenesis (SE). LEC2 overexpression induced in planta leads to spontaneous somatic embryo formation, but impairs the embryogenic response of explants cultured in vitro under auxin treatment. The auxin-related functions of LEC2 appear during SE induction, and the aim of the present study was to gain further insights into this phenomenon. To this end, the effect of LEC2 overexpression on the morphogenic responses of Arabidopsis explants cultured in vitro under different auxin treatments was evaluated. The expression profiles of the auxin biosynthesis genes were analysed in embryogenic cultures with respect to LEC2 activity. The results showed that LEC2 overexpression severely modifies the requirement of cultured explants for an exogenous auxin concentration at a level that is effective in SE induction and suggested an increase in the auxin content in 35S::LEC2-GR transgenic explants. The assumption of an LEC2 promoted increase in endogenous auxin in cultured explants was further supported by the expression profiling of the genes involved in auxin biosynthesis. The analysis indicated that YUCCAs and TAA1, working in the IPA-YUC auxin biosynthesis pathway, are associated with SE induction, and that the expression of three YUCCA genes (YUC1, YUC4 and YUC10) is associated with LEC2 activity. The results also suggest that the IAOx-mediated auxin biosynthesis pathway involving ATR1/MYB34 and CYP79B2 does not seem to be involved in SE induction. We conclude that de novo auxin production via the tryptophan-dependent IPA-YUC auxin biosynthesis pathway is implicated in SE induction, and that LEC2 plays a key role in this mechanism.


PLOS ONE | 2013

Extensive Modulation of the Transcription Factor Transcriptome during Somatic Embryogenesis in Arabidopsis thaliana

Marta Gliwicka; Katarzyna Nowak; Salma Balazadeh; Bernd Mueller-Roeber; Małgorzata D. Gaj

Molecular mechanisms controlling plant totipotency are largely unknown and studies on somatic embryogenesis (SE), the process through which already differentiated cells reverse their developmental program and become embryogenic, provide a unique means for deciphering molecular mechanisms controlling developmental plasticity of somatic cells. Among various factors essential for embryogenic transition of somatic cells transcription factors (TFs), crucial regulators of genetic programs, are believed to play a central role. Herein, we used quantitative real-time polymerase chain reaction (qRT-PCR) to identify TF genes affected during SE induced by in vitro culture in Arabidopsis thaliana. Expression profiles of 1,880 TFs were evaluated in the highly embryogenic Col-0 accession and the non-embryogenic tanmei/emb2757 mutant. Our study revealed 729 TFs whose expression changes during the 10-days incubation period of SE; 141 TFs displayed distinct differences in expression patterns in embryogenic versus non-embryogenic cultures. The embryo-induction stage of SE occurring during the first 5 days of culture was associated with a robust and dramatic change of the TF transcriptome characterized by the drastic up-regulation of the expression of a great majority (over 80%) of the TFs active during embryogenic culture. In contrast to SE induction, the advanced stage of embryo formation showed attenuation and stabilization of transcript levels of many TFs. In total, 519 of the SE-modulated TFs were functionally annotated and transcripts related with plant development, phytohormones and stress responses were found to be most abundant. The involvement of selected TFs in SE was verified using T-DNA insertion lines and a significantly reduced embryogenic response was found for the majority of them. This study provides comprehensive data focused on the expression of TF genes during SE and suggests directions for further research on functional genomics of SE.


Planta | 2015

ERF022 impacts the induction of somatic embryogenesis in Arabidopsis through the ethylene-related pathway

Katarzyna Nowak; Barbara Wójcikowska; Małgorzata D. Gaj

AbstractMain conclusionTheERF022gene was found to affect embryogenic transition in somatic cells in Arabidopsis via the ethylene-related pathway. The study provides evidence thatERF022-LEC2interaction is involved in the auxin–ethylene crosstalk that operates in somatic embryogenesis induction. The ERF022 gene of the ERF family was previously identified among the transcription factor genes that were differentially expressed in an embryogenic culture of Arabidopsis. A strong inhibition of the gene was found to be associated with the induction of somatic embryogenesis (SE) and an erf022 mutant was indicated to display a substantially impaired capacity for SE. Therefore, the molecular function of ERF022 in the induction of SE was studied in the present work. A phenotype of an erf022 mutant was indicated as being related to an increased content of ethylene. The results further suggest that the ERF022 controls the genes that are involved in both the biosynthesis (ACS7) and signalling (ERF1, ETR1) of ethylene and indicate that the ERF022 is a new regulatory element in ethylene-related responses that negatively control the ethylene content and perception. It is proposed that the negative impact of ethylene on the induction of SE may result from a modulation of the auxin-related genes that control the embryogenic transition in somatic cells. Among them, the LEC2, which is a key regulator of the induction of SE through the stimulation of auxin synthesis, was possibly related to ERF022. The results of the study provide new hormone-related clues to define the genetic network that governs SE. A putative model of the regulatory pathway is proposed that is involved in the induction of SE in which the auxin–ethylene interactions are controlled by ERF022 and LEC2 and their targets.


Methods of Molecular Biology | 2011

Somatic embryogenesis and plant regeneration in the culture of Arabidopsis thaliana (L.) Heynh. immature zygotic embryos.

Małgorzata D. Gaj

Immature zygotic embryos (IZEs) of Arabidopsis thaliana (L.) Heynh., a model species for plant -genomics, provide efficient explants for a simple, rapid, and effective system for inducing somatic embryogenesis (SE) under in vitro culture. The process of SE can be induced directly from explant tissue, or indirectly through a callus stage, and the mode of morphogenesis depends on the developmental stage of the IZEs that are used. Auxin treatment, preferably with 2,4-D, results in the formation of embryogenic callus tissue in cultures derived from IZEs less advanced in development, i.e., at globular and torpedo stages, while IZE at the late cotyledonary stage rapidly produces somatic embryos, mostly via a direct pathway. In the best SE-responsive genotypes, including the commonly used Col-0 ecotype, up to 90% of the late cotyledonary-stage zygotic embryos undergo rapid and efficient SE. The subculture of somatic embryos onto auxin-free medium results in their conversion into plantlets with an average frequency of 80%. Such a high frequency of somatic embryos developing rapidly from explant tissue, followed by efficient regeneration of fertile plants with a low level of somaclonal variation, is the recommended system for wide application in studies on mechanisms governing plant totipotency; and especially for identifying genetic factors controlling embryogenic transition of somatic plant cells. In this chapter, the induction, development, and maturation of somatic embryos leading to subsequent regeneration of Arabidopsis plantlets in culture of IZEs are presented.


Plant Cell Reports | 1998

Somatic embryogenesis and plant regeneration in callus culture of tef, Eragrostis tef (Zucc.) Trotter

A. Kebebew; Małgorzata D. Gaj; M. Maluszynski

Abstract The study was carried out to establish in vitro culture conditions for plant regeneration of tef, Eragrostis tef (Zucc.) Trotter. Mature seeds of two Ethiopian varieties, DZ-01-354 and DZ-01-196, were used to initiate callus cultures on Murashige and Skoog (MS) medium with different auxins. Four- and 8-week-old calli induced on a medium with 2.0 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) were subcultured onto various media to induce somatic embryogenesis. Compact, nodulated, embryogenic callus was observed after transfer onto MS-callus proliferating (CP) medium. Embryogenic tissue appeared on soft and amorphous callus and developed into somatic embryos during a subsequent subculture to MS embryo-promoting (EP) media. Various growth regulator combinations were tested in CP and EP media to obtain a high efficiency of somatic embryo formation. The highest frequency of calli forming somatic embryos (56.1–68.3%) was observed when CP media with 2.0 or 4.0 mg/l 2,3,5-triiodobenzoic acid were employed and then cultures were transferred to EP media with 0.5 mg/l 2,4-D and 0.5 mg/l kinetin followed by 0.5 mg/l indole-3-acetic acid and 0.5 mg/l N6-benzyladenine. Plant development from somatic embryos was obtained on MS medium supplemented with 1.0 mg/l gibberellic acid. On average, 71.2% of calli displaying somatic embryos converted into plants. Regenerated plants were successfully transferred to soil. Neither chlorophyll-deficient plants nor morphological variants were found among regenerants. All regenerated plants were fertile.


Planta | 2016

miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment

Anna M. Wójcik; Małgorzata D. Gaj

AbstractMain conclusionmiR393 was found to control embryogenic transition in somatic cells in Arabidopsis via control of theTIR1andAFB2auxin receptors genes of the F-box family. miR393 molecules are believed to regulate the expression of the auxin receptors of the TAAR clade. Considering the central role of auxin in the induction of somatic embryogenesis (SE) in plant explants cultured in vitro, the involvement of miR393 in the embryogenic transition of somatic cells has been hypothesised. To verify this assumption, the reporter, overexpressor and mutant lines in genes encoded MIR393 and TIR1/AFB proteins of the F-box family were analysed during SE in Arabidopsis. Expression profiling of MIR393a and MIR393b, mature miR393 and the target genes (TIR1, AFB1, AFB2, AFB3) were investigated in explants undergoing SE. In addition, the embryogenic potential of various genotypes with a modified activity of the MIR393 and TIR1/AFB targets was evaluated. The distinct increase in the accumulation of miR393 that was coupled with a notable down-regulation of TIR1 and AFB2 targets was observed at the early phase of SE induction. Relevant to this observation, the GUS/GFP monitored expression of MIR393, TIR1 and AFB2 transcripts was localised in explant tissue undergoing SE induction. The results suggest the miR393-mediated regulation of TIR1 and AFB2 during embryogenic transition induced in Arabidopsis and a modification of the explant sensitivity to auxin treatment is proposed as underlying this regulatory pathway.

Collaboration


Dive into the Małgorzata D. Gaj's collaboration.

Top Co-Authors

Avatar

Barbara Wójcikowska

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Nowak

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Anna M. Wójcik

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Ledwoń

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Marta Gliwicka

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Ujczak

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Aneta Trojanowska

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Ewa U. Kurczyńska

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Jagna Karcz

University of Silesia in Katowice

View shared research outputs
Top Co-Authors

Avatar

Joanna Morończyk

University of Silesia in Katowice

View shared research outputs
Researchain Logo
Decentralizing Knowledge