Malgorzata Goralska
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malgorzata Goralska.
Experimental Eye Research | 2003
Malgorzata Goralska; Ryan Dackor; Benjamin L. Holley; M. Christine McGahan
Alpha lipoic acid (LA) is a cofactor in mitochondrial dehydrogenase complexes. Previous studies have shown that when administered exogenously LA has antioxidant properties, which include free radical scavenging, metal chelation and regeneration of other antioxidants. The cells convert LA into dihydroplipoic acid (DHLA), which in the presence of iron can act as a prooxidant. In vitro DHLA reduces Fe(+3) to Fe(+2) and removes iron from ferritin, increasing the risk of Fe catalyzed free radical formation. In the present study we examined the in vivo effects of lipoic acid treatment on Fe metabolism in cultured lens epithelial cells, and found that LA decreases Fe uptake from transferrin, increases Fe deposition into ferritin and increases the concentration of this protein. When administered together with ascorbic acid, lipoic acid changes the characteristic heavy to light chain ratio of ferritin makeup. The decreased Fe uptake and increased storage diminishes the size of the cytosolic highly reactive Fe pool (LIP). These changes are associated with increased cell resistance to H(2)O(2) challenge. Therefore, LA may reduce the risk of Fe induced oxidative damage and also might be useful as a treatment of Fe overload.
Journal of Biological Chemistry | 2003
Malgorzata Goralska; Benjamin L. Holley; M. Christine McGahan
The primary cultures of canine lens epithelial cells were transiently transfected with cDNAs for dog ferritin H- or L-chains in order to study differential expression of these chains. By using chain-specific antibodies, we determined that at 48 h after transfection overexpression of L-chain was much higher (9-fold over control) than that of H-chain (1.7-fold). We discovered that differentially transfected cells secrete overexpressed chains as homopolymeric ferritin into the media. Forty-eight hours after transfection accumulation of H-ferritin in the media was much higher (3-fold) than that of L-ferritin. This resulted in lowering of the concentration of H-chain in the cytosol. Co-transfection of cells with both H- and L-chain cDNAs increased the intracellular levels of H-chain and eliminated secretion of H-ferritin to the media. We concluded that lens epithelial cells differentially regulate concentration of both ferritin chains in the cytosol. The overexpressed L-chain accumulated in the cytosol as predominantly homopolymeric L-ferritin. This is in contrast to H-chain, which is removed to the media unless there is an L-chain available to form heteropolymeric ferritin. These data indicate that the inability of cells to more strictly control cytosolic levels of L-chain may augment its accumulation in lenses of humans with hereditary hyperferritinemia cataract syndrome, which is caused by overexpression of L-chain due to mutation in the regulatory element in the untranslated region of the mRNA of the chain.
Experimental Eye Research | 2009
Malgorzata Goralska; J. Ferrell; J. Harned; Marilyn M. Lall; Steven Nagar; Lloyd N. Fleisher; M.C. McGahan
This review article covers all aspects of iron metabolism, which include studies of iron levels within the eye and the processes used to maintain normal levels of iron in ocular tissues. In addition, the involvement of iron in ocular pathology is explored. In each section there is a short introduction to a specific metabolic process responsible for iron homeostasis, which for the most part has been studied in non-ocular tissues. This is followed by a summary of our current knowledge of the process in ocular tissues.
Experimental Eye Research | 1995
M.C. McGahan; J. Harned; Malgorzata Goralska; Barbara Sherry; Lloyd N. Fleisher
Transferrin (Tf), the plasma iron transport protein which supports cell proliferation and differentiation and has bacteriostatic, antioxidant and anti-inflammatory activity, has been found in relatively high concentrations in the intraocular fluids. Intraocular synthesis of Tf has recently been demonstrated, although the intraocular tissue(s) responsible have not been identified. We designed this study to determine whether certain ocular tissues can make and secrete transferrin. Transferrin content of aqueous and vitreous humors and whole lenses was determined by ELISA. Transferrin secretion by cultured epithelia from lens and ciliary body was also measured. In addition, Northern blots of RNA from cultured lens epithelial cells, ciliary body pigmented and non-pigmented epithelial cells, and from whole iris, ciliary body and retina were probed with riboprobes for Tf mRNA and 18S rRNA. Transferrin made up 23% and 16% of total canine aqueous and vitreous protein. All ocular tissues and cultured cells tested contained mRNA for Tf, however Tf was secreted into the bathing medium from lens epithelial cell cultures, but not from either the pigmented or non-pigmented epithelial cells of the ciliary body cultures, but not from either the pigmented or non-pigmented epithelial cells of the ciliary body Cycloheximide inhibited secretion of Tf from the lens epithelial cells. Lenses from inflamed eyes contained higher levels of Tf than their contralateral controls. This is the first experimental demonstration that an intraocular tissue can make and secrete Tf. Transferrin secretion by the lens may contribute significantly to the IOF content of this important intraocular protein.
Biochimica et Biophysica Acta | 2000
Malgorzata Goralska; B Holley; M.C McGahan
The nitroxide, Tempol, can protect tissue from oxidative damage by removing superoxide and by oxidizing Fe(II) to Fe(III), thus decreasing formation of the hydroxyl radical. However, long-term exposure to Tempol can damage cells. The oxidation of Fe could have profound effects on Fe metabolism in cells, yet this has not been previously studied. In the present investigation, the effects of Tempol on the synthesis of the Fe storage protein, ferritin, and its ability to store Fe were studied in cultured lens epithelial cells (LEC). In addition, the effects of short- and long-term Tempol treatment on the resistance of LEC to oxidative stress were determined. Tempol had a clear dose-dependent inhibitory effect on ferritin synthesis noted at 6 h. By 20 h, ferritin synthesis returned toward normal levels. However, Fe incorporation into ferritin was decreased by almost 90% by the highest dose of Tempol, even at the 20-h time point. The decrease in Fe incorporation into ferritin was accompanied by a significant increase in the LMW pool of Fe. After short-term (4 h) treatment with Tempol, LEC were protected against the toxic effects of tertiary butyl hydroperoxide. However, after longer term treatment (20 h), Tempol itself had a toxic effect and did not afford protection. Indeed, at the higher doses, Tempol significantly reduced the ability of the cells to withstand oxidative stress. The redistribution of Fe within the cell after 20 h of Tempol treatment appears to render the cells more vulnerable to oxidative stress. The deleterious effects of Tempol on LEC are likely due to its effects on Fe metabolism, perhaps by reducing the availability of Fe for incorporation into ferritin and Fe-dependent enzymes as well as enlarging a low molecular weight pool of Fe which may be capable of catalyzing damaging free radical reactions.
Investigative Ophthalmology & Visual Science | 2010
J. Harned; J. Ferrell; Marilyn M. Lall; Lloyd N. Fleisher; Steven Nagar; Malgorzata Goralska; M. Christine McGahan
PURPOSE The iron storage protein ferritin is necessary for the safe storage of iron and for protection against the production of iron-catalyzed oxidative damage. Ferritin is composed of 24 subunits of two types: heavy (H) and light (L). The ratio of these subunits is tissue specific, and alteration of this ratio can have profound effects on iron storage and availability. In the present study, siRNA for each of the chains was used to alter the ferritin H:L chain ratio and to determine the effect of these changes on ferritin synthesis, iron metabolism, and downstream effects on iron-responsive pathways in canine lens epithelial cells. METHODS Primary cultures of canine lens epithelial cells were used. The cells were transfected with custom-made siRNA for canine ferritin H- and L-chains. De novo ferritin synthesis was determined by labeling newly synthesized ferritin chains with 35S-methionine, immunoprecipitation, and separation by SDS-PAGE. Iron uptake into cells and incorporation into ferritin was measured by incubating the cells with 59Fe-labeled transferrin. Western blot analysis was used to determine the presence of transferrin receptor, and ELISA was used to determine total ferritin concentration. Ferritin localization in the cells was determined by immunofluorescence labeling. VEGF, glutathione secretion levels, and cystine uptake were measured. RESULTS FHsiRNA decreased ferritin H-chain synthesis, but doubled ferritin L-chain synthesis. FLsiRNA decreased both ferritin H- and L-chain synthesis. The degradation of ferritin H-chain was blocked by both siRNAs, whereas only FHsiRNA blocked the degradation of ferritin L-chain, which caused significant accumulation of ferritin L-chain in the cells. This excess ferritin L-chain was found in inclusion bodies, some of which were co-localized with lysosomes. Iron storage in ferritin was greatly reduced by FHsiRNA, resulting in increased iron availability, as noted by a decrease in transferrin receptor levels and iron uptake from transferrin. Increased iron availability also increased cystine uptake and glutathione concentration and decreased nuclear translocation of hypoxia-inducible factor 1-alpha and vascular endothelial growth factor (VEGF) accumulation in the cell-conditioned medium. CONCLUSIONS Most of the effects of altering the ferritin H:L ratio with the specific siRNAs were due to changes in the availability of iron in a labile pool. They caused significant changes in iron uptake and storage, the rate of ferritin synthesis and degradation, the secretion of VEGF, and the levels of glutathione in cultured lens epithelial cells. These profound effects clearly demonstrate that maintenance of a specific H:L ratio is part of a basic cellular homeostatic mechanism.
Experimental Eye Research | 2012
J. Harned; J. Ferrell; S. Nagar; Malgorzata Goralska; Lloyd N. Fleisher; M.C. McGahan
Ceruloplasmin (Cp) is a ferroxidase important to the regulation of both systemic and intracellular iron levels. Cp has a critical role in iron metabolism in the brain and retina as shown in patients with aceruloplasminemia and in Cp-/-hep-/y mice where iron accumulates and neural and retinal degeneration ensue. We have previously shown that cultured lens epithelial cells (LEC) secrete Cp. The purpose of the current study was to determine if cultured retinal pigmented epithelial cells (RPE) also secrete Cp. In addition, the effects of exogenously added Cp on iron regulated proteins and pathways, ferritin, transferrin receptor, glutamate secretion and levels of hypoxia-inducible factor-1α in the nucleus were determined. Like LEC, RPE secrete Cp. Cp was found diffusely distributed within both cultured LEC and RPE, but the cell membranes had more intense staining. Exogenously added Cp caused an increase in ferritin levels in both cell types and increased secretion of glutamate. The Cp-induced increase in glutamate secretion was inhibited by both the aconitase inhibitor oxalomalic acid as well as iron chelators. As predicted by the canonical view of the iron regulatory protein (IRP) as the predominant controller of cellular iron status these results indicate that there is an increase in available iron (called the labile iron pool (LIP)) in the cytoplasm. However, both transferrin receptor (TfR) and nuclear levels of HIF-1α were increased and these results point to a decrease in available iron. Such confounding results have been found in other systems and indicate that there is a much more complex regulation of intracellularly available iron (LIP) and its downstream effects on cell metabolism. Importantly, the Cp increased production and secretion of the neurotransmitter, glutamate, is a substantive finding of clinical relevance because of the neural and retinal degeneration found in aceruloplasminemia patients. This finding and Cp-induced nuclear translocation of the hypoxia-inducible factor-1 (HIF1) subunit HIF-1α adds novel information to the list of critical pathways impacted by Cp.
Investigative Ophthalmology & Visual Science | 2009
Malgorzata Goralska; Steven Nagar; Carmen M. H. Colitz; Lloyd N. Fleisher; M. Christine McGahan
PURPOSE To determine potential differences in the characteristics of the iron storage protein ferritin and its heavy (H) and light (L) subunits in fiber cells from cataractous and noncataractous lenses of older dogs. METHODS Lens fiber cell homogenates were analyzed by SDS-PAGE, and ferritin chains were immunodetected with ferritin chain-specific antibodies. Ferritin concentration was measured by ELISA. Immunohistochemistry was used to localize ferritin chains in lens sections. RESULTS The concentration of assembled ferritin was comparable in noncataractous and cataractous lenses of similarly aged dogs. The ferritin L-chain detected in both lens types was modified and was approximately 11 kDa larger (30 kDa) than standard L-chain (19 kDa) purified from canine liver. The H-chain identified in cataractous fiber cells (29 kDa) differed from the 21-kDa standard canine H-chain and from the 12-kDa modified H-chain present in fiber cells of noncataractous lenses. Histologic analysis revealed that the H-chain was distributed differently throughout cataractous lenses compared with noncataractous lenses. There was also a difference in subunit makeup of assembled ferritin between the two lens types. Ferritin from cataractous lenses contained more H-chain and bound 11-fold more iron than ferritin from noncataractous lenses. CONCLUSIONS There are significant differences in the characteristics of ferritin H-chain and its distribution in canine cataractous lenses compared with noncataractous lenses. The higher content of H-chain in assembled ferritin allows this molecule to sequester more iron. In addition, the accumulation of H-chain in deeper fiber layers of the lens may be part of a defense mechanism by which the cataractous lens limits iron-catalyzed oxidative damage.
Investigative Ophthalmology & Visual Science | 2017
Malgorzata Goralska; Lloyd N. Fleisher; M. Christine McGahan
Purpose In humans, vitrectomy is associated with development of nuclear cataracts. Iron catalyzes free radical formation causing oxidative damage, which is implicated in cataract formation. This study was designed to determine if vitreous humor, which can initiate differentiation of lens epithelial cells, would have an effect on iron-handling proteins. Methods Cultured canine lens epithelial cells were treated with collected canine vitreous humor. Lysates of treated and control cells were separated by SDS-PAGE. Ferritin H- and L-chains, transferrin receptor 1, and aquaporin 0 were immunodetected and quantitated with specific antibodies. Morphologic changes in treated cells were assessed. Results Treatment of lens epithelial cells with a 33% (vol/vol) solution of vitreous humor changed the morphology of lens cells and induced expression of aquaporin 0, a marker of fiber cell differentiation that was undetectable in control cells. Treatment did not modify the size of iron-handling proteins but significantly increased content of ferritin from 2.9- to 8.8-fold over control and decreased levels of transferrin receptor by 37% to 59%. Conclusions Vitreous humor may significantly limit iron uptake by transferrin/transferrin receptor pathway, and by increasing ferritin levels could profoundly increase the iron-storage capacity of ferritin in lens cells. Vitreous humor may play a significant protective role against iron-catalyzed oxidative damage of lens epithelial cells and therefore in the formation of cataracts.
Investigative Ophthalmology & Visual Science | 2013
Malgorzata Goralska; Steven Nagar; Lloyd N. Fleisher; Philip Mzyk; M. Christine McGahan
PURPOSE Intracellular iron trafficking and the characteristics of iron distribution from different sources are poorly understood. We previously determined that the lens removes excess iron from fluids of inflamed eyes. In the current study, we examined uptake and intracellular distribution of ⁵⁹Fe from iron transport protein transferrin or ferric chloride (nontransferrin-bound iron [NTBI]) in cultured canine lens epithelial cells (LECs). Because lens tissue physiologically functions under low oxygen tension, we also tested effects of hypoxia on iron trafficking. Excess iron, not bound to proteins, can be damaging to cells due to its ability to catalyze formation of reactive oxygen species. METHODS LECs were labeled with ⁵⁹Fe-Tf or ⁵⁹FeCl₃ under normoxic or hypoxic conditions. Cell lysates were fractioned into mitochondria-rich, nuclei-rich, and cytosolic fractions. Iron uptake and its subcellular distribution were measured by gamma counting. RESULTS ⁵⁹Fe accumulation into LECs labeled with ⁵⁹Fe-Tf was 55-fold lower as compared with that of ⁵⁹FeCl₃. Hypoxia (24 hours) decreased uptake of iron from transferrin but not from FeCl₃. More iron from ⁵⁹FeCl₃ was directed to the mitochondria-rich fraction (32.6%-47.7%) compared with ⁵⁹Fe from transferrin (10.6%-12.6%). The opposite was found for the cytosolic fraction (8.7%-18.3% and 54.2%-46.6 %, respectively). Hypoxia significantly decreased iron accumulation in the mitochondria-rich fraction of LECs labeled with ⁵⁹Fe-Tf . CONCLUSIONS There are source-dependent differences in iron uptake and trafficking. Uptake and distribution of NTBI are not as strictly regulated as that of iron from transferrin. Excessive exposure to NTBI, which could occur in pathological conditions, may oxidatively damage organelles, particularly mitochondria.