Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malgorzata Korbas is active.

Publication


Featured researches published by Malgorzata Korbas.


Journal of Biological Chemistry | 2006

The iron-sulfur-cluster-free hydrogenase (Hmd) is a metalloenzyme with a novel iron binding motif

Malgorzata Korbas; Sonja Vogt; Wolfram Meyer-Klaucke; Eckhard Bill; Erica J. Lyon; Rudolf K. Thauer; Seigo Shima

The iron-sulfur cluster-free hydrogenase (Hmd) from methanogenic archaea harbors an iron-containing cofactor of yet unknown structure. X-ray absorption spectroscopy of the active, as isolated enzyme from Methanothermobacter marburgensis (mHmd) and of the active, reconstituted enzyme from Methanocaldococcus jannaschii (jHmd) revealed the presence of mononuclear iron with two CO, one sulfur and one or two N/O in coordination distance. In jHmd, the single sulfur ligand is most probably provided by Cys176, as deduced from a comparison of the activity and of the x-ray absorption and Mössbauer spectra of the enzyme mutated in any of the three conserved cysteines. In the isolated Hmd cofactor, two CO, one sulfur, and two nitrogen/oxygen atoms coordinate the iron, the sulfur ligand being most probably provided by mercaptoethanol, which is absolutely required for the extraction of the iron-containing cofactor from the holoenzyme and for the stabilization of the extracted cofactor. In active mHmd holoenzyme, the number of iron ligands increased by one when one of the Hmd inhibitors (CO or KCN) were present, indicating that in active Hmd, the iron contains an open coordination site, which is proposed to be the site of H2 interaction.


Chemical Reviews | 2014

Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems

M. Jake Pushie; Ingrid J. Pickering; Malgorzata Korbas; Mark J. Hackett; Graham N. George

From the perspective of a chemist, biology confers a rich variety of roles on a number of metal ions. It is widely agreed that a large fraction of the genomic output of living things contains metal or metalloid ions, although estimates of this fraction vary widely and depend upon which metal ions are considered.1−3 Moreover, recent reports suggest that, at least in some cases, there are many uncharacterized metalloproteins.4 With inclusion of the s-block metals such as Na, K, Mg, and Ca, the proportion likely approaches 100%; recent estimates from the protein data bank indicate that the prevalence of heavier metal ions of atomic number above 20 within proteins is around 22%,5 with Zn2+ proteins alone constituting about 11%. Living organisms have an inherent and very rich physical structure, with relevant length scales ranging from the nanometer scale for subcellular structure to hundreds of micrometers and above for tissue, organ, or organism-level organization. The ability to derive the spatial distribution of elements on this diversity of length scales is a key to understanding their function. Metals play essential and central roles in the most important and chemically challenging processes required for life, with active site structures and mechanisms that, at the time of their discovery, have usually not yet been duplicated in the chemical laboratory. Furthermore, diseases of metal dysregulation can cause disruption in the distribution of metals.6 For example, Menke’s disease and Occipital Horn Syndrome,7 and Wilson’s disease,8 involve disruption in copper uptake and excretion, respectively, through mutation in the ATP7A and ATP7B Cu transporters.9 The mechanisms of action of toxic elements such as mercury and arsenic are also of interest, as are essential nonmetal trace elements, such as selenium. Likewise, an increasing number of pharmaceuticals include metals or heavier elements; such chemotherapeutic drugs include the platinum derivatives cisplatin and carboplatin,10 some promising new ruthenium drugs,11 and arsenic trioxide, which has been used to treat promyelocytic leukemia.12 Understanding the localization, speciation, and distribution of these at various length scales is of significant interest. A wide variety of heavier elements can be probed by X-ray spectroscopic methods; these are shown graphically in Figure ​Figure1.1. X-ray fluorescence imaging is a powerful technique that can be used to determine elemental and chemical species distributions at a range of spatial resolutions within samples of biological tissues. Most modern applications require the use of synchrotron radiation as a tunable and high spectral brightness source of X-rays. The method uses a microfocused X-ray beam to excite X-ray fluorescence from specific elements within a sample. Because the method depends upon atomic physics, it is highly specific and enables a wide range of chemical elements to be investigated. A significant advantage over more conventional methods is the ability to measure intact biological samples without significant treatment with exogenous reagents. The technique is capable of determining metal and nonmetal distributions on a variety of length scales, with information on chemical speciation also potentially available. Figure ​Figure22 shows examples of rapid-scan X-ray fluorescence imaging at two contrasting length scales: rapid-scan imaging13 of a section of a human brain taken from an individual suffering from multiple sclerosis and showing elemental profiles for Fe, Cu, and Zn;14 and a high-resolution image showing mercury and other elements in a section of retina from a zebrafish larva treated with methylmercury chloride.15 We will discuss both the state of the art in terms of experimental methods and some recent applications of the methods. This Review considers X-ray fluorescence imaging with incident X-ray energies in the hard X-ray regime, which we define as 2 keV and above. We review technologies for producing microfocused X-ray beams and for detecting X-ray fluorescence, as well as methods that confer chemical selectivity or three-dimensional visualization. We discuss applications in key areas with a view to providing examples of how the technique can provide information on biological systems. We also discuss synergy with other methods, which have overlapping or complementary capabilities. Our goal is to provide useful and pertinent information to encourage and enable further use of this powerful method in chemical and biochemical studies of living organisms. Figure 1 Periodic table of the elements showing elements of biological interest that can be probed using X-ray fluorescence imaging. Elements are divided into three categories, those that are physiologically important, those that are pharmacologically active, ...


Proceedings of the National Academy of Sciences of the United States of America | 2008

Localizing organomercury uptake and accumulation in zebrafish larvae at the tissue and cellular level

Malgorzata Korbas; Scott R. Blechinger; Patrick H. Krone; Ingrid J. Pickering; Graham N. George

Using synchrotron x-ray fluorescence mapping, we have examined the uptake and localization of organic mercury in zebrafish larvae. Strikingly, the greatest accumulation of methyl and ethyl mercury compounds was highly localized in the rapidly dividing lens epithelium, with lower levels going to brain, optic nerve, and various other organs. The data suggest that the reported impairment of visual processes by mercury may arise not only from previously reported neurological effects, but also from direct effects on the ocular tissue. This novel approach is a powerful tool for directly investigating the molecular toxicology of heavy metals, and should be equally applicable to the study of a wide range of elements in developing embryos.


ACS Chemical Neuroscience | 2010

The Chemical Nature of Mercury in Human Brain Following Poisoning or Environmental Exposure

Malgorzata Korbas; John L. O’Donoghue; Gene E. Watson; Ingrid J. Pickering; Satya P. Singh; Gary J. Myers; Thomas W. Clarkson; Graham N. George

Methylmercury is among the most potentially toxic species to which human populations are exposed, both at high levels through poisonings and at lower levels through consumption of fish and other seafood. However, the molecular mechanisms of methylmercury toxicity in humans remain poorly understood. We used synchrotron X-ray absorption spectroscopy (XAS) to study mercury chemical forms in human brain tissue. Individuals poisoned with high levels of methylmercury species showed elevated cortical selenium with significant proportions of nanoparticulate mercuric selenide plus some inorganic mercury and methylmercury bound to organic sulfur. Individuals with a lifetime of high fish consumption showed much lower levels of mercuric selenide and methylmercury cysteineate. Mercury exposure did not perturb organic selenium levels. These results elucidate a key detoxification pathway in the central nervous system and provide new insights into the appropriate methods for biological monitoring.


Oncogene | 2006

Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7

O Ohlenschlager; T Seiboth; H Zengerling; L Briese; A Marchanka; M Baum; Malgorzata Korbas; Wolfram Meyer-Klaucke; M Durst; M. Gorlach

The oncoprotein E7 of human papilloma viruses (HPV) is involved in the pathogenesis and maintenance of human cervical cancers. The most prevalent HPV types found in cervix carcinomas are HPV16, 18 and 45. The structure of the E7 dimer from HPV45 (PDB 2F8B) was determined by nuclear magnetic resonance spectroscopy. Each monomer comprises an unfolded N-terminus and a well-structured C-terminal domain with a β1β2α1β3α2 topology representing a unique zinc-binding fold found only for E7. Dimerization occurs through the α1/α1′ helices and intermolecular β-sheet formation but excludes the zinc-binding sites. E7 is reported to interact with a number of cellular proteins (e.g. pRb, p21CIP1). Binding of a peptide derived from the C-terminus of p21CIP1 to the C-terminal domain of E7 was characterized by monitoring chemical shift perturbations of the amide groups of E7. This provides direct evidence that a shallow groove situated between α1 and β1 of the E7 C-terminal domain is interacting with the C-terminus of p21CIP1. Intriguingly, this binding site overlaps with the low-affinity binding site on E7 for the C-domain of pRb.


ACS Chemical Biology | 2012

Chemical Form Matters: Differential Accumulation of Mercury Following Inorganic and Organic Mercury Exposures in Zebrafish Larvae

Malgorzata Korbas; Tracy C. MacDonald; Ingrid J. Pickering; Graham N. George; Patrick H. Krone

Mercury, one of the most toxic elements, exists in various chemical forms each with different toxicities and health implications. Some methylated mercury forms, one of which exists in fish and other seafood products, pose a potential threat, especially during embryonic and early postnatal development. Despite global concerns, little is known about the mechanisms underlying transport and toxicity of different mercury species. To investigate the impact of different mercury chemical forms on vertebrate development, we have successfully combined the zebrafish, a well-established developmental biology model system, with synchrotron-based X-ray fluorescence imaging. Our work revealed substantial differences in tissue-specific accumulation patterns of mercury in zebrafish larvae exposed to four different mercury formulations in water. Methylmercury species not only resulted in overall higher mercury burdens but also targeted different cells and tissues than their inorganic counterparts, thus revealing a significant role of speciation in cellular and molecular targeting and mercury sequestration. For methylmercury species, the highest mercury concentrations were in the eye lens epithelial cells, independent of the formulation ligand (chloride versusl-cysteine). For inorganic mercury species, in absence of l-cysteine, the olfactory epithelium and kidney accumulated the greatest amounts of mercury. However, with l-cysteine present in the treatment solution, mercuric bis-l-cysteineate species dominated the treatment, significantly decreasing uptake. Our results clearly demonstrate that the common differentiation between organic and inorganic mercury is not sufficient to determine the toxicity of various mercury species.


Journal of Biological Chemistry | 2007

Interaction of Potassium Cyanide with the [Ni-4Fe-5S] Active Site Cluster of CO Dehydrogenase from Carboxydothermus hydrogenoformans

Seung-Wook Ha; Malgorzata Korbas; Mirjam Klepsch; Wolfram Meyer-Klaucke; Ortwin Meyer; Vitali Svetlitchnyi

The Ni-Fe carbon monoxide (CO) dehydrogenase II (CODHIICh) from the anaerobic CO-utilizing hydrogenogenic bacterium Carboxydothermus hydrogenoformans catalyzes the oxidation of CO, presumably at the Ni-(μ2S)-Fe1 subsite of the [Ni-4S-5S] cluster in the active site. The CO oxidation mechanism proposed on the basis of several CODHIICh crystal structures involved the apical binding of CO at the nickel ion and the activation of water at the Fe1 ion of the cluster. To understand how CO interacts with the active site, we have studied the reactivity of the cluster with potassium cyanide and analyzed the resulting type of nickel coordination by x-ray absorption spectroscopy. Cyanide acts as a competitive inhibitor of reduced CODHIICh with respect to the substrate CO and is therefore expected to mimic the substrate. It inhibits the enzyme reversibly, forming a nickel cyanide. In this reaction, one of the four square-planar sulfur ligands of nickel is replaced by the carbon atom of cyanide, suggesting removal of the μ2S from the Ni-(μ2S)-Fe1 subsite. Upon reactivation of the inhibited enzyme, cyanide is released, and the square-planar coordination of nickel by 4S ligands is recovered, which includes the reformation of the Ni-(μ2S)-Fe1 bridge. The results are summarized in a model of the CO oxidation mechanism at the [Ni-4Fe-5S] active site cluster of CODHIICh from C. hydrogenoformans.


Review of Scientific Instruments | 2006

KEMP : A program script for automated biological x-ray absorption spectroscopy data reduction

Malgorzata Korbas; Daniel Fulla Marsa; Wolfram Meyer-Klaucke

Automation of x-ray absorption spectroscopic (XAS) data reduction is essential to cope with high-throughput data collection becoming available at an increasing number of synchrotron radiation centers. A flexible script called KEMP has been developed and implemented at the XAS beamline at EMBL Hamburg. It automatically processes fluorescence XAS data. The pipeline includes dead time correction, energy calibration, selection of fluorescence detector channels, as well as the extraction of x-ray absorption near-edge structure and extended x-ray-absorption fine structure. The output is quickly available and thus can be included in the design of further experiments, which results in a more efficient use of the beam time.


ACS Chemical Biology | 2013

Methylmercury targets photoreceptor outer segments.

Malgorzata Korbas; Barry Lai; Stefan Vogt; Sophie-Charlotte Gleber; Chithra Karunakaran; Ingrid J. Pickering; Patrick H. Krone; Graham N. George

Human populations experience widespread low level exposure to organometallic methylmercury compounds through consumption of fish and other seafood. At higher levels, methylmercury compounds specifically target nervous systems, and among the many effects of their exposure are visual disturbances, including blindness, which previously were thought to be due to methylmercury-induced damage to the visual cortex. Here, we employ high-resolution X-ray fluorescence imaging using beam sizes of 500 × 500 and 250 × 250 nm(2) to investigate the localization of mercury at unprecedented resolution in sections of zebrafish larvae ( Danio rerio ), a model developing vertebrate. We demonstrate that methylmercury specifically targets the outer segments of photoreceptor cells in both the retina and pineal gland. Methylmercury distribution in both tissues was correlated with that of sulfur, which, together with methylmercurys affinity for thiolate donors, suggests involvement of protein cysteine residues in methylmercury binding. In contrast, in the lens, the mercury distribution was different from that of sulfur, with methylmercury specifically accumulating in the secondary fiber cells immediately underlying the lens epithelial cells rather than in the lens epithelial cells themselves. Since methylmercury targets two main eye tissues (lens and photoreceptors) that are directly involved in visual perception, it now seems likely that the visual disruption associated with methylmercury exposure in higher animals including humans may arise from direct damage to photoreceptors, in addition to injury of the visual cortex.


Journal of Biological Inorganic Chemistry | 2010

Dynamic Accumulation and Redistribution of Methylmercury in the Lens of Developing Zebrafish Embryos And Larvae

Malgorzata Korbas; Patrick H. Krone; Ingrid J. Pickering; Graham N. George

Neurotoxic methylmercury compounds are widespread in the environment and human exposure worries many communities worldwide. Despite numerous studies addressing methylmercury toxicity, the detailed mechanisms underlying its transport and accumulation, especially during early developmental stages, remain unclear. Zebrafish larvae are increasingly used as a model system for studies of vertebrate development and toxicology. Previously, we have identified the lens epithelium as the primary site for cellular mercury accumulation in developing zebrafish larvae (Korbas et al. in Proc Natl Acad Sci USA 105:12108–12112, 2008). Here we present a study on the dynamics of methylmercury accumulation and redistribution in the lens following embryonic and larval exposure to methylmercury l-cysteineate using synchrotron X-ray fluorescence imaging. We observed highly specific accumulation of mercury in the lens that continues well after removal of fish from treatment solutions, thus significantly increasing the post-exposure loading of mercury in the lens. The results indicate that mercury is redistributed from the original target tissue to the eye lens, identifying the developing lens as a major sink for methylmercury in early embryonic and larval stages.

Collaboration


Dive into the Malgorzata Korbas's collaboration.

Top Co-Authors

Avatar

Graham N. George

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick H. Krone

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Rokita

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

Satya P. Singh

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley K. James

University of Saskatchewan

View shared research outputs
Researchain Logo
Decentralizing Knowledge