Małgorzata Trzcinka-Ochocka
Nofer Institute of Occupational Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Małgorzata Trzcinka-Ochocka.
Environmental Health Perspectives | 2005
Claire de Burbure; Jean-Pierre Buchet; Ariane Leroyer; Catherine Nisse; Jean-Marie Haguenoer; Antonio Mutti; Zdenek Smerhovsky; Miroslav Cikrt; Małgorzata Trzcinka-Ochocka; Grazyna Razniewska; Marek Jakubowski; Alfred Bernard
Lead, cadmium, mercury, and arsenic are common environmental pollutants in industrialized countries, but their combined impact on children’s health is little known. We studied their effects on two main targets, the renal and dopaminergic systems, in > 800 children during a cross-sectional European survey. Control and exposed children were recruited from those living around historical nonferrous smelters in France, the Czech Republic, and Poland. Children provided blood and urine samples for the determination of the metals and sensitive renal or neurologic biomarkers. Serum concentrations of creatinine, cystatin C, and β2-microglobulin were negatively correlated with blood lead levels (PbB), suggesting an early renal hyperfiltration that averaged 7% in the upper quartile of PbB levels (> 55 μg/L; mean, 78.4 μg/L). The urinary excretion of retinol-binding protein, Clara cell protein, and N-acetyl-β-d-glucosaminidase was associated mainly with cadmium levels in blood or urine and with urinary mercury. All four metals influenced the dopaminergic markers serum prolactin and urinary homovanillic acid, with complex interactions brought to light. Heavy metals polluting the environment can cause subtle effects on children’s renal and dopaminergic systems without clear evidence of a threshold, which reinforces the need to control and regulate potential sources of contamination by heavy metals.
Journal of Occupational Health | 2005
Marek Jakubowski; Małgorzata Trzcinka-Ochocka
Biological Monitoring of Exposure: Trends and Key Developments: Marek Jakubowski, et al. Nofer Institute of Occupational Medicine, Poland—The concept of biological monitoring (BM) has gained the special interest of individual scientists and international organizations. Today, when analytical problems have almost ceased due to new laboratory techniques and quality assurance systems, the methods for interpretation of results have become the most important issue. There are important discrepancies regarding the role of biological monitoring of occupational exposure between Europe and the United States. BM has been an important tool of medical health surveillance in the European countries. In the United States it belongs rather to the field of occupational hygiene. It seems that both the approaches can be accepted. More attention should be paid to the development of the truly health‐based biomarkers of exposure based on the dose‐effect and dose‐response relationships. New areas of application of BM of occupational exposure include determination of DNA and protein adducts, unchanged volatile organic compounds in urine, monitoring of exposure to pesticides, antineoplastic drugs, hard metals, and polycyclic aromatic hydrocarbons. In the general environment BM is the most valuable tool for acquiring knowledge of current levels of internal exposure to xenobiotics, identifying the hot spots and developments in trends of exposure. BM can provide policy makers with more accurate information on the control measures undertaken. At present, the main areas include heavy metals, persistent organic pollutants and pesticides. BM of chemical exposure has become increasingly important in the assessment of the health risk in occupational and environmental medicine. Therefore it would be worthwhile to include BM in the curricula for the training of occupational hygienists.
Environmental Research | 2010
Małgorzata Trzcinka-Ochocka; Marek Jakubowski; W. Szymczak; Beata Janasik; Renata Brodzka
Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9; 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction (beta(2)M-U RBP, NAG), glomerular dysfunction (Alb-U and beta(2)M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone density.
BioMed Research International | 2013
Kinga Polańska; Wojciech Hanke; Wojciech Sobala; Małgorzata Trzcinka-Ochocka; Danuta Ligocka; Slawomir Brzeznicki; Halina Strugała-Stawik; Per Magnus
This paper estimates the effects of exposure to environmental factors, including lead, mercury, environmental tobacco smoke (ETS), and polycyclic aromatic hydrocarbons (PAH), on child psychomotor development. The study population consists of mother-child pairs in the Polish Mother and Child Cohort Study. Prenatal and postnatal exposure to environmental factors was determined from biomarker measurements as follows: for lead exposure—cord blood lead level, for mercury—maternal hair mercury level, for ETS—cotinine level in saliva and urine, and for PAH—1-hydroxypyrene (1-HP) in urine. At the age of 12 (406 subjects) and 24 months (198 subjects) children were assessed using Bayley Scales of Infant and Toddler Development. There were no statistically significant effects of prenatal exposure to mercury or 1-HP on child psychomotor development. After adjusting for potential confounders, adverse effects of prenatal exposure to ETS on motor development (β = −2.6; P = 0.02) and postnatal exposure to ETS on cognitive (β = −0.2; P = 0.05) and motor functions (β = −0.5; P = 0.01) were found. The adverse effect of prenatal lead exposure on cognitive score was of borderline significance (β = −6.2; P = 0.06). The study underscores the importance of policies and public health interventions that aim to reduce prenatal and postnatal exposure to lead and ETS.
Journal of Toxicology and Environmental Health | 2006
Jadwiga Palus; Dobrosława Lewińska; Elżbieta Dziubałtowska; Wojciech Wąsowicz; Jolanta Gromadzinska; Konrad Rydzynski; Małgorzata Stańczyk; Joanna Arkusz; Małgorzata Trzcinka-Ochocka; Maciej Stępnik
In C57Bl/6J mice chronically exposed to arsenate in drinking water at 50, 200, or 500 μg As/L, genotoxic effects in bone-marrow cells using micronucleus test and in peripheral blood leukocytes using the comet assay were determined after 3, 6 or 12 mo. To assess the modulating role of selenium in development of the effects, the animals were fed a specially prepared low-selenium diet and were supplemented with sodium selenite (200 μg Se/L) in drinking water (supplemented groups) or were without Se supplementation (nonsupplemented groups). Measurements of glutathione peroxidase activity in erythrocytes and plasma as well as selenium concentration in plasma were performed after 3, 6, and 12 mo and showed a marked decrease in values in animals in non-Se supplemented compared to Se-supplemented groups. After 3 mo of arsenic exposure in the Se-supplemented animals the level of DNA fragmentation (without Endo III and Fpg enzymes) did not differ from the control; however, increased oxidative damage of purine and pyrimidine bases was observed. In groups not supplemented with Se, an increase of DNA fragmentation was observed; however, the levels of oxidative DNA damage in these groups did not differ from the control. None of the positive effects observed in the comet assay after 3 mo was related to arsenate concentration. The levels of DNA damage after 6 and 12 mo of exposure to arsenic as well as the frequency of micronuclei after 3, 6, and 12 mo did not differ significantly between exposed and control animals, irrespective of Se supplementation status.
Toxicology Letters | 1983
law Barański; Jolanta Opacka; Teresa Wrońska-Nofer; Małgorzata Trzcinka-Ochocka; Krystyna Sitarek
A total dose of 8 mg cadmium acetate/kg body weight was administered by repeated i.p. injection to female Wistar rats for 12 weeks. Slight, but significant, increases in blood pressure were recorded. The lipid concentration in serum and other tissues examined was not significantly affected, apart from a decrease in hepatic triglyceride. The blood cadmium (Cd) concentration was increased 10 times and Cd in the aortic wall was 4 times higher in treated rats. Cd affects hepatic lipid metabolism and it is considered that the increase in blood pressure is associated with accumulation of Cd in the arterial walls.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2014
Tadeusz Halatek; Halina Sińczuk-Walczak; Beata Janasik; Małgorzata Trzcinka-Ochocka; Renata Winnicka; Wojciech Wasowicz
The aim of this study was to compare indices of exposure in workers employed at different work posts in a copper smelter plant using neurophysiological tests and to evaluate the relationship between urinary arsenic species with the aid of sensitive respiratory and renal biomarkers. We have attempted to elucidate the impact of different arsenic speciation forms on the observed health effects. We focused on the workers (n = 45) exposed to atmospheres containing specific diverse mixtures of metals (such as those occurring in Departments of Furnaces, Lead and Electrolysis) compared to controls (n = 16). Subjective symptoms from the central (CNS) and the peripheral (PNS) nervous system were recorded and visual evoked potential (VEP), electroneurography (ENeG) and electroencephalography (EEG) curves were analysed. Levels of airborne lead (PbA), zinc (ZnA) and copper (CuA) and Pb levels in blood (PbB) and the relationships between airborne As concentrations (AsA) and the urinary levels of the inorganic (iAs); As(+3), As(+5) and the organic; methylarsonate (MMA(V)), dimethylarsinate (DMA(V)) and arsenobetaine (AsB) arsenic species were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Effects of exposure were expressed in terms of biomarker levels: Clara cell protein (CC16) in serum as early pulmonary biomarker and β2-microglobulin (β2M) in urine and serum, retinol binding protein (RBP) as renal markers, measured by sensitive latex-immunoassay (LIA). Abnormal results of neurophysiological tests, VEP, EEG and ENeG showed dominant subclinical effects in CNS and PNS of workers from Departments of Lead and Furnace. In group of smelters from Departments of Furnace exposed to arsenic above current TLV, excreted arsenic species As(+3) and As(+5) seemed to reduce the level of Clara cell protein (CC16), thereby reducing anti-inflammatory potential of the lungs and increasing the levels of renal biomarker (β2M) and copper in urine (CuU). The study confirmed deleterious arsenic effects to the kidney by increased levels of low-molecular weight protein in urine and the extent of the renal copper accumulation/excretion. The results of our work also support the usefulness of application of the sensitive neurophysiologic tests, such as VEP, EEG and ENeG, for the detection of early subclinical effects of the exposure of the nervous system in copper smelters.
International Journal of Occupational Medicine and Environmental Health | 2014
Halina Sińczuk-Walczak; Beata Janasik; Małgorzata Trzcinka-Ochocka; Magdalena Stanislawska; Maria Szymczak; Tadeusz Halatek; Jolanta Walusiak-Skorupa
ObjectivesThe assessment of the neurotoxic effect of arsenic (As) and its inorganic compounds is still the subject of interest due to a growing As application in a large array of technologies and the need to constantly verify the principles of prevention and technological parameters. The aim of this study was to determine the status of the nervous system (NS) in workers exposed to As at concentrations exceeding hygiene standards (Threshold Limit Values (TLV) − 10 μg/m3, Biological Exposure Index (BEI) − 35 μg/l) and to analyze the relationship between the NS functional state, species of As in urine and As levels in the workplace air.Material and MethodsThe study group comprised 21 men (mean age: 47.43±7.59) employed in a copper smelting factory (mean duration of employment: 22.29±11.09). The control group comprised 16 men, matched by age and work shifts. Arsenic levels in the workplace air (As-A) ranged from 0.7 to 92.3 μg/m3; (M = 25.18±28.83). The concentration of total arsenic in urine (Astot-U) ranged from 17.35 to 434.68 μg/l (M = 86.82±86.6).ResultsSyndrome of peripheral nervous system (PNS) was manifested by extremity fatigue (28.6%), extremity pain (33.3%) and paresthesia in the lower extremities (33.3%), as well as by neuropathy-type mini-symptoms (23.8%). Electroneurographic (ENeG) tests of peroneal nerves showed significantly decreased response amplitude with normal values of motor conduction velocity (MCV). Stimulation of sural nerves revealed a significantly slowed sensory conduction velocity (SCV) and decreased sensory potential amplitude. Neurophysiological parameters and the results of biological and environmental monitoring showed a relationship between Astot, AsIII (trivalent arsenic), the sum of iAs (AsIII+AsV (pentavalent arsenic))+MMA (monomethylarsonic acid) concentration in urine and As levels in the air.ConclusionsThe results of the study demonstrate that occupational exposure to inorganic arsenic levels exceeding hygiene standards (TLV, BEI) generates disorders typical of peripheral neuropathy.
Journal of Occupational Health | 2015
Teresa Wrońska-Nofer; Anna Pisarska; Małgorzata Trzcinka-Ochocka; Tadeusz Halatek; Jan Stetkiewicz; J. Braziewicz; Jerzy-Roch Nofer; Wojciech Wąsowicz
Scintigraphic assessment of renal function in steel plant workers occupationally exposed to lead: Teresa Wrońska‐Nofer, et al. Department of Toxicology and Carcinogenesis, Nofer Institute of Occupational Medicine, Poland
International Journal of Occupational Medicine and Environmental Health | 2013
Renata Brodzka; Małgorzata Trzcinka-Ochocka; Beata Janasik
ObjectivesThe method for the determination of As, Al, Cd, Ni, Pb (toxic elements) and Cr, Co, Cu, Fe, Mn, Zn (essential elements) in human urine by the use of Inductively Coupled Plasma Mass Spectrometry (quadrupole ICP-MS DRCe Elan, Perkin Elmer) with the dynamic reaction cell (DRC) was developed.Materials and MethodsThe method has been applied for multi-element analysis of the urine of 16 non-exposed healthy volunteers and 27 workers employed in a copper smelter. The analysis was conducted after initial 10-fold dilution of the urine samples with 0,1% nitric acid. Rhodium was used as an internal standard. The method validation parameters such as detection limit, sensitivity, precision were described for all elements. Accuracy of the method was checked by the regular use of certified reference materials ClinCheck®-Control Urine (Recipe) as well as by participation of the laboratory in the German External Quality Assessment Scheme (G-EQUAS).ResultsThe detection limits (DL 3s) of the applied method were 0.025, 0.007, 0.002, 0.004, 0.004, 0.086, 0.037, 0.009, 0.016, 0.008, 0.064 (μg/l) for Al, As, Cd, Cr, Co, Cu, Fe, Mn, Ni, Pb, Zn in urine, respectively. For each element linearity with correlation coefficient of at least 0.999 was determined. Spectral interferences from some of the ions were removed using DRC-e with addition of alternative gas: methane for cobalt, copper, cadmium, chromium, iron, manganese, nickel and rhodium, and oxygen for arsenic.ConclusionsThe developed method allows to determine simultaneously eleven elements in the urine with low detection limits, high sensitivity and good accuracy. Moreover, the method is appropriate for the assessment of both environmental and occupational exposure.