Malik Lutzmann
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malik Lutzmann.
The EMBO Journal | 2006
Malik Lutzmann; Domenico Maiorano; Marcel Méchali
Initiation of DNA synthesis involves the loading of the MCM2–7 helicase onto chromatin by Cdt1 (origin licensing). Geminin is thought to prevent relicensing by binding and inhibiting Cdt1. Here we show, using Xenopus egg extracts, that geminin binding to Cdt1 is not sufficient to block its activity and that a Cdt1–geminin complex licenses chromatin, but prevents rereplication, working as a molecular switch at replication origins. We demonstrate that geminin is recruited to chromatin already during licensing, while bulk geminin is recruited at the onset of S phase. A recombinant Cdt1–geminin complex binds chromatin, interacts with the MCM2–7 complex and licenses chromatin once per cell cycle. Accordingly, while recombinant Cdt1 induces rereplication in G1 or G2 and activates an ATM/ATR‐dependent checkpoint, the Cdt1–geminin complex does not. We further demonstrate that the stoichiometry of the Cdt1–geminin complex regulates its activity. Our results suggest a model in which the MCM2–7 helicase is loaded onto chromatin by a Cdt1–geminin complex, which is inactivated upon origin firing by binding additional geminin. This origin inactivation reaction does not occur if only free Cdt1 is present on chromatin.
Molecular Cell | 2012
Malik Lutzmann; Corinne Grey; Sabine Traver; Olivier Ganier; Apolinar Maya-Mendoza; Noemie Ranisavljevic; Florence Bernex; Atsuya Nishiyama; Nathalie Montel; Elodie Gavois; Luc Forichon; Bernard de Massy; Marcel Méchali
We generated knockout mice for MCM8 and MCM9 and show that deficiency for these genes impairs homologous recombination (HR)-mediated DNA repair during gametogenesis and somatic cells cycles. MCM8(-/-) mice are sterile because spermatocytes are blocked in meiotic prophase I, and females have only arrested primary follicles and frequently develop ovarian tumors. MCM9(-/-) females also are sterile as ovaries are completely devoid of oocytes. In contrast, MCM9(-/-) testes produce spermatozoa, albeit in much reduced quantity. Mcm8(-/-) and Mcm9(-/-) embryonic fibroblasts show growth defects and chromosomal damage and cannot overcome a transient inhibition of replication fork progression. In these cells, chromatin recruitment of HR factors like Rad51 and RPA is impaired and HR strongly reduced. We further demonstrate that MCM8 and MCM9 form a complex and that they coregulate their stability. Our work uncovers essential functions of MCM8 and MCM9 in HR-mediated DSB repair during gametogenesis, replication fork maintenance, and DNA repair.
Molecular Cell | 2008
Malik Lutzmann; Marcel Méchali
Prereplication complexes (pre-RCs) define potential origins of DNA replication and allow the recruitment of the replicative DNA helicase MCM2-7. Here, we characterize MCM9, a member of the MCM2-8 family. We demonstrate that MCM9 binds to chromatin in an ORC-dependent manner and is required for the recruitment of the MCM2-7 helicase onto chromatin. Its depletion leads to a block in pre-RC assembly, as well as DNA replication inhibition. We show that MCM9 forms a stable complex with the licensing factor Cdt1, preventing an excess of geminin on chromatin during the licensing reaction. Our data suggest that MCM9 is an essential activating linker between Cdt1 and the MCM2-7 complex, required for loading the MCM2-7 helicase onto DNA replication origins. Thus, Cdt1, with its two opposing regulatory binding factors MCM9 and geminin, appears to be a major platform on the pre-RC to integrate cell-cycle signals.
Current Biology | 2005
Domenico Maiorano; Liliana Krasinska; Malik Lutzmann; Marcel Méchali
A crucial regulation for maintaining genome integrity in eukaryotes is to limit DNA replication in S phase to only one round. Several models have been proposed; one of which, the licensing model, predicted that formation of the nuclear membrane restricts access to chromatin to a positive replication factor. Cdt1, a factor binding to origins and recruiting the MCM2-7 helicase, has been identified as a component of the licensing system in Xenopus and other eukaryotes. Nevertheless, evidence is missing demonstrating a direct role for unscheduled Cdt1 expression in promoting illegitimate reinitiation of DNA synthesis. We show here that Xenopus Cdt1 is absent in G2 nuclei, suggesting that it might be either degraded or exported. Recombinant Cdt1, added to egg extracts in G2, crosses the nuclear membrane, binds to chromatin, and relicenses the chromosome for new rounds of DNA synthesis in combination with chromatin bound Cdc6. The mechanism involves rebinding of MCM3 to chromatin. Reinitiation is blocked by geminin only in G2 and is not stimulated by Cdc6, demonstrating that Cdt1, but not Cdc6, is limiting for reinitiation in egg extracts. These results suggest that removal of Cdt1 from chromatin and its nuclear exclusion in G2 is critical in regulating licensing and that override of this control is sufficient to promote illegitimate firing of origins.
Journal of Structural Biology | 2012
Dirk Flemming; Damien P. Devos; Johannes Schwarz; Stefan Amlacher; Malik Lutzmann; Ed Hurt
Nuclear pore complexes (NPCs) embedded in the double nuclear membrane mediate the entire nucleocytoplasmic transport between the nucleus and cytoplasm. Each NPC is composed of about 30 different proteins (nucleoporins or Nups), which exist in multiple (8, 16 or 32) copies within the NPC scaffold. Recently, we have identified and characterized the large structural Nups, Nup188 and Nup192, from the thermophilic eukaryote Chaetomium thermophilum, which exhibited superior properties for biochemical and structural studies, when compared to their mesophilic orthologs. Here, we study the large structural Nups from the model organism yeast Saccharomyces cerevisiae. Our data show that yeast Nup188 like its thermophilic orthologue ctNup188 exhibits a twisted S-like structure, which flexibly binds the linker nucleoporin Nic96 via a short conserved α-helix motif. Using bioinformatic methods, we have generated a pseudo-atomic structural model of Nup188 and its related Nup192, which further strengthens the view that the large α-solenoid structural Nups are related to karyopherins.
Current Biology | 2006
Olivier Cuvier; Malik Lutzmann; Marcel Méchali
The origin-recognition complex (ORC) has an essential role in defining DNA replication origins and in chromosome segregation. Recent studies in Drosophila orc2 mutants, and in human cells depleted of ORC2, have suggested that this factor is also implicated in mitotic chromosome assembly. We asked whether ORC was required for M phase chromosome assembly independently of its function in DNA replication. We performed depletion assays and reconstitution experiments in Xenopus egg extracts, in conditions of M phase chromosome assembly coupled or uncoupled from DNA replication. We show that, although ORC is dispensable for mitotic chromosome condensation, it is necessary at the interphase-mitosis transition for proper mitotic chromosome assembly to occur in a reaction not strictly dependent on DNA replication. This function involves the recruitment to chromatin of cdc2 kinase and the chromatin disassembly of interphasic replication protein A (RPA) foci. Furthermore, we show that mutations of RPA at the cdc2 kinase site prevents RPA dissociation from chromatin and impairs mitotic chromosome assembly without affecting DNA replication. Our results support the conclusion that in addition to its role in the assembly of prereplication complexes (pre-RCs), at the G1-S transition, ORC is also required for their disassembly at mitotic entry.
Cell | 2008
Marcel Méchali; Malik Lutzmann
When observing living cells, only mitosis is easily distinguishable from other phases of the cell cycle. In this issue, Sakaue-Sawano et al. (2008) present a method to visually distinguish cells at different phases of the cell cycle by the expression of colored fusion proteins that are under the control of the ubiquitin ligases SCF and APC.
Cell Cycle | 2009
Malik Lutzmann; Marcel Méchali
In all eukaryotes, the heterohexameric MCM2-7 complex functions as the main replicative helicase during S phase. During early G1 phase, it is recruited onto chromatin in a sequence of reactions called pre-replication complex (pre-RC) formation or DNA licensing. This process is ATP-dependent and at least two different chromatin-bound ATPase activities are required besides several others essential, but not enzymatically active, proteins. Although functionally conserved during evolution, pre-RC formation and the way the MCM2-7 helicase is loaded onto DNA are more complex in metazoans than in single-cell eukaryotes. Recently, we characterized a new essential factor for pre-RC assembly and DNA licensing, the vertebrate-specific MCM9 protein that contains not only an ATPase but also a helicase domain. MCM9 adds another layer of complexity to how vertebrates achieve and regulate the loading of the MCM2-7 helicase and DNA replication.
Current Opinion in Cell Biology | 2006
Domenico Maiorano; Malik Lutzmann; Marcel Méchali
Gene | 2005
Malik Lutzmann; Domenico Maiorano; Marcel Méchali