Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malika Chaouch is active.

Publication


Featured researches published by Malika Chaouch.


American Journal of Human Genetics | 2002

Homozygous Defects in LMNA, Encoding Lamin A/C Nuclear-Envelope Proteins, Cause Autosomal Recessive Axonal Neuropathy in Human (Charcot-Marie-Tooth Disorder Type 2) and Mouse

Annachiara De Sandre-Giovannoli; Malika Chaouch; Serguei Kozlov; Jean-Michel Vallat; Meriem Tazir; Nadia Kassouri; Pierre Szepetowski; Tarik Hammadouche; Antoon Vandenberghe; Colin L. Stewart; Djamel Grid; Nicolas Lévy

The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes---NF-L and KIF1Bbeta---have been identified to date. Homozygosity mapping in inbred Algerian families with autosomal recessive CMT2 (AR-CMT2) provided evidence of linkage to chromosome 1q21.2-q21.3 in two families (Zmax=4.14). All patients shared a common homozygous ancestral haplotype that was suggestive of a founder mutation as the cause of the phenotype. A unique homozygous mutation in LMNA (which encodes lamin A/C, a component of the nuclear envelope) was identified in all affected members and in additional patients with CMT2 from a third, unrelated family. Ultrastructural exploration of sciatic nerves of LMNA null (i.e., -/-) mice was performed and revealed a strong reduction of axon density, axonal enlargement, and the presence of nonmyelinated axons, all of which were highly similar to the phenotypes of human peripheral axonopathies. The finding of site-specific amino acid substitutions in limb-girdle muscular dystrophy type 1B, autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy type 1A, autosomal dominant partial lipodystrophy, and, now, AR-CMT2 suggests the existence of distinct functional domains in lamin A/C that are essential for the maintenance and integrity of different cell lineages. To our knowledge, this report constitutes the first evidence of the recessive inheritance of a mutation that causes CMT2; additionally, we suggest that mutations in LMNA may also be the cause of the genetically overlapping disorder CMT2B1.


American Journal of Human Genetics | 2007

Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H.

Valérie Delague; Arnaud Jacquier; Tarik Hamadouche; Yannick Poitelon; Cécile Baudot; Irène Boccaccio; Eliane Chouery; Malika Chaouch; Nora Kassouri; Rosette Jabbour; Djamel Grid; André Mégarbané; Georg Haase; Nicolas Lévy

Charcot-Marie-Tooth (CMT) disorders are a clinically and genetically heterogeneous group of hereditary motor and sensory neuropathies characterized by muscle weakness and wasting, foot and hand deformities, and electrophysiological changes. The CMT4H subtype is an autosomal recessive demyelinating form of CMT that was recently mapped to a 15.8-Mb region at chromosome 12p11.21-q13.11, in two consanguineous families of Mediterranean origin, by homozygosity mapping. We report here the identification of mutations in FGD4, encoding FGD4 or FRABIN (FGD1-related F-actin binding protein), in both families. FRABIN is a GDP/GTP nucleotide exchange factor (GEF), specific to Cdc42, a member of the Rho family of small guanosine triphosphate (GTP)-binding proteins (Rho GTPases). Rho GTPases play a key role in regulating signal-transduction pathways in eukaryotes. In particular, they have a pivotal role in mediating actin cytoskeleton changes during cell migration, morphogenesis, polarization, and division. Consistent with these reported functions, expression of truncated FRABIN mutants in rat primary motoneurons and rat Schwann cells induced significantly fewer microspikes than expression of wild-type FRABIN. To our knowledge, this is the first report of mutations in a Rho GEF protein being involved in CMT.


Neuromuscular Disorders | 2003

The phenotypic manifestations of autosomal recessive axonalCharcot–Marie–Tooth due to a mutation in Lamin A/C gene

Malika Chaouch; Y. Allal; A. De Sandre-Giovannoli; Vallat Jm; A. Amer-el-Khedoud; N. Kassouri; A. Chaouch; P. Sindou; T. Hammadouche; Meriem Tazir; Nicolas Lévy; D. Grid

Charcot-Marie-Tooth disease constitutes a genetically heterogeneous group of hereditary motor and sensory peripheral neuropathies. The axonal type of Charcot-Marie-Tooth is designated type 2. Six loci for autosomal dominant and three for recessive Charcot-Marie-Tooth type 2 have been reported so far. In this study we report the phenotype of autosomal recessive axonal Charcot-Marie-Tooth type 2 due to a recently-described mutation (c.892C>T-p.R298C) in a gene encoding Lamin A/C nuclear envelope proteins and the first gene in which a mutation leads to autosomal recessive Charcot-Marie-Tooth type 2. We have explored eight patients from four Algerian families. The onset is usually in the second decade and the course is rapid, involving upper limbs and proximal muscles, leading to a severe condition in less than 4 years. Many different mutations in Lamin A/C have been identified as causing variable phenotypes, such as limb girdle muscular dystrophy type 1B, autosomal dominant and recessive Emery-Dreyfuss muscular dystrophy, dilated cardiomyopathy with atrioventricular conduction defect, and Dunnigan-type familial partial lipodystrophy should prompt us to fully investigate the skeletal and cardiac muscles in patients affected with autosomal recessive Charcot-Marie-Tooth type 2 carrying a mutation in LMNA.


Journal of Medical Genetics | 2005

Homozygosity mapping of autosomal recessive demyelinating Charcot-Marie-Tooth neuropathy (CMT4H) to a novel locus on chromosome 12p11.21-q13.11

A. De Sandre-Giovannoli; Valérie Delague; T. Hamadouche; Malika Chaouch; M Krahn; Irène Boccaccio; T Maisonobe; E Chouery; R Jabbour; S Atweh; Djamel Grid; Mégarbané A; Nicolas Lévy

Hereditary motor and sensory neuropathies, commonly referred to as Charcot-Marie-Tooth disease (CMT), are among the most common inherited neurological diseases, with an overall prevalence of about 1–4/10 000.1 Clinically, the hereditary motor and sensory neuropathies are characterised by progressive muscular and sensory loss in the distal extremities with chronic distal weakness, deformation of the feet (pes cavus), and loss of deep tendon reflexes.2 Two main subgroups have been defined on the basis of electrophysiological and histopathological characteristics: the demyelinating form (CMT1) and the axonal form (CMT2). CMT1 can be distinguished from CMT2 by measuring motor nerve conduction velocities in the median nerve: patients affected by CMT1 show reduced velocities (<38 m/s), whereas those affected by CMT2 show velocities of ⩾38 m/s, the normal value being ⩾48 m/s. Recently, a new group of CMT has been described, referred to as intermediate CMT3,4; in this, nerve conduction velocities overlap CMT1 and CMT2, and nerve biopsies present characteristics of both demyelination and axonal loss. CMT is also characterised by great genetic heterogeneity, with more than 30 loci and 19 genes identified to date5,6 (inherited peripheral neuropathy mutation database, IPNMDB, http://www.molgen.ua.ac.be/CMTMutations). All modes of inheritance have been reported: autosomal dominant, autosomal recessive, and X linked. Autosomal recessive demyelinating forms (CMT4) are, in most cases, less frequent, of earlier onset, and more severe than the autosomal dominant CMT forms (CMT1), with a fast progression to severe disability leading to a higher frequency of wheelchair dependency early in life.7 To date, at least seven demyelinating forms with autosomal recessive inheritance have been identified:


Journal of Medical Genetics | 2003

Phenotypic and genetic exploration of severe demyelinating and secondary axonal neuropathies resulting from GDAP1 nonsense and splicing mutations

De Sandre-Giovannoli A; Malika Chaouch; Irène Boccaccio; Rafaëlle Bernard; Delague; Djamel Grid; Vallat Jm; Nicolas Lévy; Mégarbané A

We identified two novel GDAP1 homozygous mutations in children affected with severe demyelinating peripheral neuropathies and born to consanguineous parents. A 9 year old Lebanese girl carried a nonsense mutation in exon 5 and two Algerian brothers aged 10 and 8 years carried a mutation at the intron 3 acceptor splicing site. The clinical, electrophysiological, and neuropathological explorations showed common features consistent with a severe demyelinating peripheral neuropathy associated with loss of major fibres. Our findings, supported by the first GDAP1 expression study in patients, show further evidence that mutations in this gene cause an autsomal recessive severe demyelinating peripheral phenotype (CMT4A) associated with axon loss. Charcot-Marie-Tooth disease (CMT) (also called hereditary motor and sensory neuropathy (HMSN)) is clinically, electrophysiologically, and genetically extremely heterogeneous with more than 40 loci and 16 genes identified to date.1 The most common inherited peripheral neuropathies are CMT type 1 and CMT type 2, which are characterised by progressive weakness and atrophy, initially of the peroneal muscles and later of the distal muscles of the arms. Myelination is mainly affected in CMT1, with neuropathological findings of demyelination and remyelination with onion bulb formation, clusters of regeneration, and Schwann cell proliferation. CMT2 is an axonal neuropathy characterised by the reduction of fibre density in the absence of clusters of myelin regeneration or proliferation of Schwann cells. Very often, neuropathological analysis of patients carrying demyelinating neuropathies shows concomitant axon fibre loss.2 A motor nerve conduction velocity (MNCV) threshold value of 38 ms−1 at the median nerve is used to classify patients with CMT as being either CMT1 (MNCV 38 ms−1). CMT4A defines a particularly severe polyneuropathy of the demyelinating type, associated with distal weakness and atrophy of the limbs, with early onset. The muscular atrophy rapidly progresses, extending proximally …


Annals of Human Genetics | 2008

Founder effect and estimation of the age of the c.892C>T (p.Arg298Cys) mutation in LMNA associated to Charcot-Marie-Tooth subtype CMT2B1 in families from North Western Africa.

T. Hamadouche; Y. Poitelon; Emmanuelle Génin; Malika Chaouch; Meriem Tazir; N. Kassouri; S. Nouioua; A. Chaouch; Irène Boccaccio; T. Benhassine; A. De Sandre-Giovannoli; Djamel Grid; Nicolas Lévy; Valérie Delague

CMT2B1, an axonal subtype (MIM 605588) of the Charcot‐Marie‐Tooth disease, is an autosomal recessive motor and sensory neuropathy characterized by progressive muscular and sensory loss in the distal extremities with chronic distal weakness. The genetic defect associated with the disease is, to date, a unique homozygous missense mutation, p.Arg298Cys (c.892C>T), in the LMNA gene. So far, this mutation has only been found in affected individuals originating from a restricted region of North Western Africa (northwest of Algeria and east of Morocco), strongly suggesting a founder effect. In order to address this hypothesis, genotyping of both STRs and intragenic SNPs was performed at the LMNA locus, at chromosome 1q21.2‐q21.3, in 42 individuals affected with CMT2B1 from 25 Algerian families. Our results indicate that the affected individuals share a common ancestral haplotype in a region of about 1.0 Mb (1 cM) and that the most recent common ancestor would have lived about 800–900 years ago (95% confidence interval: 550 to 1300 years).


BMC Medical Genetics | 2015

Molecular and clinical study of a cohort of 110 Algerian patients with autosomal recessive ataxia

Wahiba Hamza; Lamia Ali Pacha; Tarik Hamadouche; Jean Muller; Nathalie Drouot; Farida Ferrat; S. Makri; Malika Chaouch; Meriem Tazir; Michel Koenig; Traki Benhassine

BackgroundAutosomal recessive cerebellar ataxias (ARCA) are a complex group of neurodegenerative disorders with great genetic and phenotypic heterogeneity, over 30 genes/loci have been associated with more than 20 different clinical forms of ARCA. Genetic heterogeneity combined with highly variable clinical expression of the cerebellar symptoms and overlapping features complicate furthermore the etiological diagnosis of ARCA. The determination of the most frequent mutations and corresponding ataxias, as well as particular features specific to a population, are mandatory to facilitate and speed up the diagnosis process, especially when an appropriate treatment is available.MethodsWe explored 166 patients (115 families) refered to the neurology units of Algiers central hospitals (Algeria) with a cerebellar ataxia phenotype segregating as an autosomal recessive pattern of inheritance. Genomic DNA was extracted from peripheral blood samples and mutational screening was performed by PCR and direct sequencing or by targeted genomic capture and massive parallel sequencing of 57 genes associated with inherited cerebellar ataxia phenotypes.ResultsIn this work we report the clinical and molecular results obtained on a large cohort of Algerian patients (110 patients/76 families) with genetically determined autosomal recessive ataxia, representing 9 different types of ARCA and 23 different mutations, including 6 novel ones. The five most common ARCA in this cohort were Friedreich ataxia, ataxia with isolated vitamin E deficiency, ataxia with oculomotor apraxia type 2, autosomal recessive spastic ataxia of Charlevoix-Saguenay and ataxia with oculomotor apraxia type 1.ConclusionWe report here a large cohort of patients with genetically determined autosomal recessive ataxia and the first study of the genetic context of ARCA in Algeria. This study showed that in Algerian patients, the two most common types of ataxia (Friedreich ataxia and ataxia with isolated vitamin E deficiency) coexist with forms that may be less common or underdiagnosed. To refine the genotype/phenotype correlation in rare and heteregeneous diseases as autosomal recessive ataxias, more extensive epidemiological investigations and reports are necessary as well as more accurate and detailed clinical characterizations. The use of standardized clinical and molecular protocols would thus enable a better knowledge of the different forms of ARCA.


JAMA Neurology | 2018

Clinical, Biomarker, and Molecular Delineations and Genotype-Phenotype Correlations of Ataxia With Oculomotor Apraxia Type 1

Mathilde Renaud; Maria-Céu Moreira; Bondo Ben Monga; Diana Rodriguez; Rabab Debs; Perrine Charles; Malika Chaouch; Farida Ferrat; Chloé Laurencin; Laurent Vercueil; Martial Mallaret; Abderrahim M’zahem; Lamia Ali Pacha; Meriem Tazir; Caroline Tilikete; Elisabeth Ollagnon; François Ochsner; Thierry Kuntzer; Hans H. Jung; Jean‐Marie Beis; Jean-Claude Netter; Atbin Djamshidian; Mattew Bower; Armand Bottani; Richard A. Walsh; S. Murphy; Thomas T. Reiley; Éric Bieth; Filip Roelens; Bwee Tien Poll-The

Importance Ataxia with oculomotor apraxia type 1 (AOA1) is an autosomal recessive cerebellar ataxia due to mutations in the aprataxin gene (APTX) that is characterized by early-onset cerebellar ataxia, oculomotor apraxia, axonal motor neuropathy, and eventual decrease of albumin serum levels. Objectives To improve the clinical, biomarker, and molecular delineation of AOA1 and provide genotype-phenotype correlations. Design, Setting, and Participants This retrospective analysis included the clinical, biological (especially regarding biomarkers of the disease), electrophysiologic, imaging, and molecular data of all patients consecutively diagnosed with AOA1 in a single genetics laboratory from January 1, 2002, through December 31, 2014. Data were analyzed from January 1, 2015, through January 31, 2016. Main Outcomes and Measures The clinical, biological, and molecular spectrum of AOA1 and genotype-phenotype correlations. Results The diagnosis of AOA1 was confirmed in 80 patients (46 men [58%] and 34 women [42%]; mean [SD] age at onset, 7.7 [7.4] years) from 51 families, including 57 new (with 8 new mutations) and 23 previously described patients. Elevated levels of &agr;-fetoprotein (AFP) were found in 33 patients (41%); hypoalbuminemia, in 50 (63%). Median AFP level was higher in patients with AOA1 (6.0 ng/mL; range, 1.1-17.0 ng/mL) than in patients without ataxia (3.4 ng/mL; range, 0.8-17.2 ng/mL; P < .01). Decreased albumin levels (&rgr; = −0.532) and elevated AFP levels (&rgr; = 0.637) were correlated with disease duration. The p.Trp279* mutation, initially reported as restricted to the Portuguese founder haplotype, was discovered in 53 patients with AOA1 (66%) with broad white racial origins. Oculomotor apraxia was found in 49 patients (61%); polyneuropathy, in 74 (93%); and cerebellar atrophy, in 78 (98%). Oculomotor apraxia correlated with the severity of ataxia and mutation type, being more frequent with deletion or truncating mutations (83%) than with presence of at least 1 missense variant (17%; P < .01). Mean (SD) age at onset was higher for patients with at least 1 missense mutation (17.7 [11.4] vs 5.2 [2.6] years; P < .001). Conclusions and Relevance The AFP level, slightly elevated in a substantial fraction of patients, may constitute a new biomarker for AOA1. Oculomotor apraxia may be an optional finding in AOA1 and correlates with more severe disease. The p.Trp279* mutation is the most frequent APTX mutation in the white population. APTX missense mutations may be associated with a milder phenotype.


BMC Neuroscience | 2016

Greater improvement in LRRK2 G2019S patients undergoing Subthalamic Nucleus Deep Brain Stimulation compared to non-mutation carriers

Massiva Sayad; Mohamed Zouambia; Malika Chaouch; Farida Ferrat; Mustapha Nebbal; Mohamed Bendini; Suzanne Lesage; Alexis Brice; Mohamed Brahim Errahmani; Boualem Asselah


Neuromuscular Disorders | 2007

G.O.3 Mutations in FGD4 encoding the Rho GDP/GTP exchange factor FRABIN cause autosomal recessive Charcot-Marie-Tooth type 4H

Valérie Delague; A. Jacquier; T. Hamadouche; Yannick Poitelon; C. Baudot; Irène Boccaccio; Eliane Chouery; Malika Chaouch; N. Kassouri; Rosette Jabbour; Djamel Grid; André Mégarbané; G. Haase; Nicolas Lévy

Collaboration


Dive into the Malika Chaouch's collaboration.

Top Co-Authors

Avatar

Nicolas Lévy

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vallat Jm

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge