Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malin C. Lagerström is active.

Publication


Featured researches published by Malin C. Lagerström.


Nature Reviews Drug Discovery | 2008

Structural diversity of G protein-coupled receptors and significance for drug discovery

Malin C. Lagerström; Helgi B. Schiöth

G protein-coupled receptors (GPCRs) are the largest family of membrane-bound receptors and also the targets of many drugs. Understanding of the functional significance of the wide structural diversity of GPCRs has been aided considerably in recent years by the sequencing of the human genome and by structural studies, and has important implications for the future therapeutic potential of targeting this receptor family. This article aims to provide a comprehensive overview of the five main human GPCR families — Rhodopsin, Secretin, Adhesion, Glutamate and Frizzled/Taste2 — with a focus on gene repertoire, general ligand preference, common and unique structural features, and the potential for future drug discovery.


FEBS Letters | 2003

Seven evolutionarily conserved human rhodopsin G protein‐coupled receptors lacking close relatives

Robert Fredriksson; Pär J. Höglund; David E. Gloriam; Malin C. Lagerström; Helgi B. Schiöth

We report seven new members of the superfamily of human G protein‐coupled receptors (GPCRs) found by searches in the human genome databases, termed GPR100, GPR119, GPR120, GPR135, GPR136, GPR141, and GPR142. We also report 16 orthologues of these receptors in mouse, rat, fugu (pufferfish) and zebrafish. Phylogenetic analysis shows that these are additional members of the family of rhodopsin‐type GPCRs. GPR100 shows similarity with the orphan receptor SALPR. Remarkably, the other receptors do not have any close relative among other known human rhodopsin‐like GPCRs. Most of these orphan receptors are highly conserved through several vertebrate species and are present in single copies. Analysis of expressed sequence tag (EST) sequences indicated individual expression patterns, such as for GPR135, which was found in a wide variety of tissues including eye, brain, cervix, stomach and testis. Several ESTs for GPR141 were found in marrow and cancer cells, while the other receptors seem to have more restricted expression patterns.


Neuron | 2010

VGLUT2-Dependent Sensory Neurons in the TRPV1 Population Regulate Pain and Itch

Malin C. Lagerström; Katarzyna Rogoz; Bjarke Abrahamsen; Emma Persson; Björn Reinius; Karin Nordenankar; Caroline Ölund; Casey Smith; José Alfredo Mendez; Zhou-Feng Chen; John N. Wood; Åsa Wallén-Mackenzie; Klas Kullander

The natural response to itch sensation is to scratch, which relieves the itch through an unknown mechanism. Interaction between pain and itch has been frequently demonstrated, and the selectivity hypothesis of itch, based on data from electrophysiological and behavioral experiments, postulates the existence of primary pain afferents capable of repressing itch. Here, we demonstrate that deletion of vesicular glutamate transporter (VGLUT) 2 in a subpopulation of neurons partly overlapping with the vanilloid receptor (TRPV1) primary afferents resulted in a dramatic increase in itch behavior accompanied by a reduced responsiveness to thermal pain. The increased itch behavior was reduced by administration of antihistaminergic drugs and by genetic deletion of the gastrin-releasing peptide receptor, demonstrating a dependence on VGLUT2 to maintain normal levels of both histaminergic and nonhistaminergic itch. This study establishes that VGLUT2 is a major player in TRPV1 thermal nociception and also serves to regulate a normal itch response.


Biochemical and Biophysical Research Communications | 2003

There exist at least 30 human G-protein-coupled receptors with long Ser/Thr-rich N-termini

Robert Fredriksson; David E. Gloriam; Pär J. Höglund; Malin C. Lagerström; Helgi B. Schiöth

We report six novel members of the superfamily of human G-protein coupled receptors (GPCRs) found by searches in the human genome databases, termed GPR123, GPR124, GPR125, GPR126, GPR127, and GPR128. Phylogenetic analysis demonstrates that these are additional members of the family of GPCRs with long N-termini, previously termed EGF-7TM, LNB-7TM, B2 or LN-7TM, showing that there exist at least 30 such GPCRs in the human genome. Three of these receptors form their own phylogenetic cluster, while two other places in a cluster with the previously reported HE6 and GPR56 (TM7XN1) and one with EMR1-3. All the novel receptors have a GPS domain in their N-terminus, except GPR123, as well as long Ser/Thr rich regions forming mucin-like stalks. GPR124 and GPR125 have a leucine rich repeat (LRR), an immunoglobulin (Ig) domain, and a hormone-binding domain (HBD). The Ig domain shows similarities to motilin and titin, while the LRR domain shows similarities to LRIG1 and SLIT1-2. GPR127 has one EGF domain while GPR126 and GPR128 do not contain domains that are readily recognized in other proteins beyond the GPS domain. We found several human EST sequences for most of the receptors showing differential expression patterns, which may indicate that some of these receptors participate in central functions while others are more likely to have a role in the immune or reproductive systems.


PLOS Computational Biology | 2006

The G protein-coupled receptor subset of the chicken genome

Malin C. Lagerström; Anders R. Hellström; David E. Gloriam; Thomas P. Larsson; Helgi B. Schiöth; Robert Fredriksson

G protein–coupled receptors (GPCRs) are one of the largest families of proteins, and here we scan the recently sequenced chicken genome for GPCRs. We use a homology-based approach, utilizing comparisons with all human GPCRs, to detect and verify chicken GPCRs from translated genomic alignments and Genscan predictions. We present 557 manually curated sequences for GPCRs from the chicken genome, of which 455 were previously not annotated. More than 60% of the chicken Genscan gene predictions with a human ortholog needed curation, which drastically changed the average percentage identity between the human–chicken orthologous pairs (from 56.3% to 72.9%). Of the non-olfactory chicken GPCRs, 79% had a one-to-one orthologous relationship to a human GPCR. The Frizzled, Secretin, and subgroups of the Rhodopsin families have high proportions of orthologous pairs, although the percentage of amino acid identity varies. Other groups show large differences, such as the Adhesion family and GPCRs that bind exogenous ligands. The chicken has only three bitter Taste 2 receptors, and it also lacks an ortholog to human TAS1R2 (one of three GPCRs in the human genome in the Taste 1 receptor family [TAS1R]), implying that the chickens ability and mode of detecting both bitter and sweet taste may differ from the humans. The chicken genome contains at least 229 olfactory receptors, and the majority of these (218) originate from a chicken-specific expansion. To our knowledge, this dataset of chicken GPCRs is the largest curated dataset from a single gene family from a non-mammalian vertebrate. Both the updated human GPCR dataset, as well the chicken GPCR dataset, are available for download.


Molecular Biology and Evolution | 2008

The Secretin GPCRs Descended from the Family of Adhesion GPCRs

Karl J. V. Nordström; Malin C. Lagerström; Linn Waller; Robert Fredriksson; Helgi B. Schiöth

The Adhesion G-protein-coupled receptors (GPCRs) are the most complex gene family among GPCRs with large genomic size, multiple introns, and a fascinating flora of functional domains, though the evolutionary origin of this family has been obscure. Here we studied the evolution of all class B (7tm2)-related genes, including the Adhesion, Secretin, and Methuselah families of GPCRs with a focus on nine genomes. We found that the cnidarian genome of Nematostella vectensis has a remarkably rich set of Adhesion GPCRs with a broad repertoire of N-terminal domains although this genome did not have any Secretin GPCRs. Moreover, the single-celled and colony-forming eukaryotes Monosiga brevicollis and Dictyostelium discoideum contain Adhesion-like GPCRs although these genomes do not have any Secretin GPCRs suggesting that the Adhesion types of GPCRs are the most ancient among class B GPCRs. Phylogenetic analysis found Adhesion group V (that contains GPR133 and GPR144) to be the closest relative to the Secretin family in the Adhesion family. Moreover, Adhesion group V sequences in N. vectensis share the same splice site setup as the Secretin GPCRs. Additionally, one of the most conserved motifs in the entire Secretin family is only found in group V of the Adhesion family. We suggest therefore that the Secretin family of GPCRs could have descended from group V Adhesion GPCRs. We found a set of unique Adhesion-like GPCRs in N. vectensis that have long N-termini containing one Somatomedin B domain each, which is a domain configuration similar to that of a set of Adhesion-like GPCRs found in Branchiostoma floridae. These sequences show slight similarities to Methuselah sequences found in insects. The extended class B GPCRs have a very complex evolutionary history with several species-specific expansions, and we identified at least 31 unique N-terminal domains originating from other protein classes. The overall N-terminal domain structure, however, concurs with the phylogenetic analysis of the transmembrane domains, thus enabling us to track the origin of most of the subgroups.


FEBS Letters | 2002

Novel human G protein‐coupled receptors with long N‐terminals containing GPS domains and Ser/Thr‐rich regions

Robert Fredriksson; Malin C. Lagerström; Pär J. Höglund; Helgi B. Schiöth

We report eight novel members of the superfamily of human G protein‐coupled receptors (GPCRs) found by searches in the human genome databases, termed GPR97, GPR110, GPR111, GPR112, GPR113, GPR114, GPR115 and GPR116. Phylogenetic analysis shows that these are additional members of a family of GPCRs with long N‐termini, previously termed EGF‐7TM, LNB‐7TM, B2 or LN‐7TM. Five of the receptors form their own phylogenetic cluster, while three others form a cluster with the previously reported HE6 and GPR56 (TM7XN1). All the receptors have a GPS domain in their N‐terminus and long Ser/Thr‐rich regions forming mucin‐like stalks. GPR113 has a hormone binding domain and one EGF domain. GPR112 has over 20 Ser/Thr repeats and a pentraxin domain. GPR116 has two immunoglobulin‐like repeats and a SEA box. We found several human EST sequences for most of the receptors showing differential expression patterns, which may indicate that some of these receptors participate in reproductive functions while others are more likely to have a role in the immune system.


Biochemical Journal | 2004

Cloning, tissue distribution, pharmacology and three-dimensional modelling of melanocortin receptors 4 and 5 in rainbow trout suggest close evolutionary relationship of these subtypes

Tatjana Haitina; Janis Klovins; Jan Andersson; Robert Fredriksson; Malin C. Lagerström; Dan Larhammar; Earl T. Larson; Helgi B. Schiöth

The rainbow trout (Oncorhynchus mykiss) is one of the most widely used fish species in aquaculture and physiological research. In the present paper, we report the first cloning, 3D (three-dimensional) modelling, pharmacological characterization and tissue distribution of two melanocortin (MC) receptors in rainbow trout. Phylogenetic analysis indicates that these receptors are orthologues of the human MC4 and MC5 receptors. We created 3D molecular models of these rainbow trout receptors and their human counterparts. These models suggest greater divergence between the two human receptors than between their rainbow trout counterparts. The pharmacological analyses demonstrated that ACTH (adrenocorticotropic hormone) had surprisingly high affinity for the rainbow trout MC4 and MC5 receptors, whereas alpha-, beta- and gamma-MSH (melanocyte-stimulating hormone) had lower affinity. In second-messenger studies, the cyclic MSH analogues MTII and SHU9119 acted as potent agonist and antagonist respectively at the rainbow trout MC4 receptor, indicating that these ligands are suitable for physiological studies in rainbow trout. Interestingly, we found that the rainbow trout MC4 receptor has a natural high-affinity binding site for zinc ions (0.5 microM) indicating that zinc may play an evolutionary conserved role at this receptor. Reverse transcription PCR indicates that the rainbow trout receptors are expressed both in peripheral tissues and in the central nervous system, including the telencephalon, optic tectum and hypothalamus. Overall, this analysis indicates that the rainbow trout MC4 and MC5 receptors have more in common than their mammalian counterparts, which may suggest that these two receptors have a closer evolutionary relationship than the other MC receptor subtypes.


The Journal of Neuroscience | 2009

Restricted Cortical and Amygdaloid Removal of Vesicular Glutamate Transporter 2 in Preadolescent Mice Impacts Dopaminergic Activity and Neuronal Circuitry of Higher Brain Function

Åsa Wallén-Mackenzie; Karin Nordenankar; Kim Fejgin; Malin C. Lagerström; Lina Emilsson; Robert Fredriksson; Caroline Wass; Daniel Andersson; Emil Egecioglu; My Andersson; Joakim Strandberg; Örjan Lindhe; Helgi B. Schiöth; Karima Chergui; Eric Hanse; Bengt Långström; Anders Fredriksson; Lennart Svensson; Erika Roman; Klas Kullander

A major challenge in neuroscience is to resolve the connection between gene functionality, neuronal circuits, and behavior. Most, if not all, neuronal circuits of the adult brain contain a glutamatergic component, the nature of which has been difficult to assess because of the vast cellular abundance of glutamate. In this study, we wanted to determine the role of a restricted subpopulation of glutamatergic neurons within the forebrain, the Vglut2-expressing neurons, in neuronal circuitry of higher brain function. Vglut2 expression was selectively deleted in the cortex, hippocampus, and amygdala of preadolescent mice, which resulted in increased locomotor activity, altered social dominance and risk assessment, decreased sensorimotor gating, and impaired long-term spatial memory. Presynaptic VGLUT2-positive terminals were lost in the cortex, striatum, nucleus accumbens, and hippocampus, and a downstream effect on dopamine binding site availability in the striatum was evident. A connection between the induced late-onset, chronic reduction of glutamatergic neurotransmission and dopamine signaling within the circuitry was further substantiated by a partial attenuation of the deficits in sensorimotor gating by the dopamine-stabilizing antipsychotic drug aripiprazole and an increased sensitivity to amphetamine. Somewhat surprisingly, given the restricted expression of Vglut2 in regions responsible for higher brain function, our analyses show that VGLUT2-mediated neurotransmission is required for certain aspects of cognitive, emotional, and social behavior. The present study provides support for the existence of a neurocircuitry that connects changes in VGLUT2-mediated neurotransmission to alterations in the dopaminergic system with schizophrenia-like behavioral deficits as a major outcome.


Nature Reviews Neuroscience | 2014

Synaptic changes induced by melanocortin signalling

Vanni Caruso; Malin C. Lagerström; Pawel K. Olszewski; Robert Fredriksson; Helgi B. Schiöth

The melanocortin system has a well-established role in the regulation of energy homeostasis, but there is growing evidence of its involvement in memory, nociception, mood disorders and addiction. In this Review, we focus on the role of the melanocortin 4 receptor and provide an integrative view of the molecular mechanisms that lead to melanocortin-induced changes in synaptic plasticity within these diverse physiological systems. We also highlight the importance of melanocortin peptides and receptors in chronic pain syndromes, memory impairments, depression and drug abuse, and the possibility of targeting them for therapeutic purposes.

Collaboration


Dive into the Malin C. Lagerström's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge