Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malin Elfstrand is active.

Publication


Featured researches published by Malin Elfstrand.


Nature | 2013

The Norway spruce genome sequence and conifer genome evolution

Björn Nystedt; Nathaniel R. Street; Anna Wetterbom; Andrea Zuccolo; Yao-Cheng Lin; Douglas G. Scofield; Francesco Vezzi; Nicolas Delhomme; Stefania Giacomello; Andrey Alexeyenko; Riccardo Vicedomini; Kristoffer Sahlin; Ellen Sherwood; Malin Elfstrand; Lydia Gramzow; Kristina Holmberg; Jimmie Hällman; Olivier Keech; Lisa Klasson; Maxim Koriabine; Melis Kucukoglu; Max Käller; Johannes Luthman; Fredrik Lysholm; Totte Niittylä; Åke Olson; Nemanja Rilakovic; Carol Ritland; Josep A. Rosselló; Juliana Stival Sena

Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.


Mycorrhiza | 2007

Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi

Cajsa M. R. Nygren; Johan Edqvist; Malin Elfstrand; Gregory Heller; Andy F. S. Taylor

In northern forest ecosystems, most soil nitrogen (N) is in organic form and forest trees are largely dependent on ectomycorrhizal (ECM) fungi and their degradative abilities for N uptake. The ability of ECM fungi to acquire N from organic substrates should, therefore, be a widespread trait given its ecological importance. However, little is known about the degradative abilities of most ECM fungi as they remain untested due to problems of isolation or extremely slow growth in pure culture. In this paper, we present data on extracellular protease activity of 32 species of ECM fungi, most of which have not previously been cultured. Milk powder plates and zymograms were compared for detecting protease activity in these intractable species. In total, 29/32 of the species produced extracellular protease activity, but detection was method dependent. Growth on milk powder plates detected protease activity in 28 of 32 species, while zymograms only detected proteases in Amanita muscaria, Russula chloroides, Lactarius deterrimus and Lactarius quieticolor. The study supports the hypothesis that protease excretion is a widespread physiological trait in ECM fungi and that this ability is of considerable significance for nitrogen uptake in forest ecosystems.


BMC Plant Biology | 2011

Chemical and transcriptional responses of Norway spruce genotypes with different susceptibility to Heterobasidion spp. infection

Marie Danielsson; Karl Lundén; Malin Elfstrand; Jiang Hu; Tao Zhao; Jenny Arnerup; Katarina Ihrmark; Gunilla Swedjemark; Anna-Karin Borg-Karlson; Jan Stenlid

BackgroundNorway spruce [Picea abies (L.) Karst.] is one of the most important conifer species in Europe. The wood is economically important and infections by wood-rotting fungi cause substantial losses to the industry.The first line of defence in a Norway spruce tree is the bark. It is a very efficient barrier against infection based on its mechanical and chemical properties. Once an injury or an infection is recognized by the tree, induced defences are activated. In this study we examined transcriptional response, using 454-sequencing, and chemical profiles in bark of Norway spruce trees with different susceptibility to Heterobasidion annosum s.l. infection. The aim was to find associations between the transcriptome and chemical profiles to the level of susceptibility to Heterobasidion spp. in Norway spruce genotypes.ResultsBoth terpene and phenol compositions were analysed and at 28 days post inoculation (dpi) high levels of 3-carene was produced in response to H. annosum. However, significant patterns relating to inoculation or to genotypes with higher or lower susceptibility could only be found in the phenol fraction. The levels of the flavonoid catechin, which is polymerized into proanthocyanidins (PA), showed a temporal variation; it accumulated between 5 and 15 dpi in response to H. annosum infection in the less susceptible genotypes. The transcriptome data suggested that the accumulation of free catechin was preceded by an induction of genes in the flavonoid and PA biosynthesis pathway such as leucoanthocyanidin reductase. Quantitative PCR analyses verified the induction of genes in the phenylpropanoid and flavonoid pathway. The qPCR data also highlighted genotype-dependent differences in the transcriptional regulation of these pathways.ConclusionsThe varying dynamics in transcriptional and chemical patterns displayed by the less susceptible genotypes suggest that there is a genotypic variation in successful spruce defence strategies against Heterobasidion. However, both high levels of piceasides and flavonoids in the less susceptible genotypes suggested the importance of the phenolic compounds in the defence. Clearly an extended comparison of the transcriptional responses in the interaction with Heterobasidion between several independent genotypes exhibiting reduced susceptibility is needed to catalogue mechanisms of successful host defence strategies.


Scandinavian Journal of Forest Research | 2000

Gene Transfer by Particle Bombardment to Embryogenic Cultures of Picea abies and the Production of Transgenic Plantlets

David E. Clapham; Malin Elfstrand; Izabela Sabala; Sara von Arnold; Petra Demel; Hans-Ulrich Koop

A particle inflow gun enabled efficient production of transgenic plantlets of Picea abies from embryogenic suspension cultures. In transient assays, the Zea ubiquitin promoter was 12-16 times as active as the 35S promoter. For stable transformation, the plasmid pAHC25 contained the bar gene and the gusA gene, both driven by the Zea ubiquitin promoter. Cells were maintained from 1 to 3 h before bombardment on proliferation medium supplemented with 0.25 M myoinositol and, from day 8, supplemented with Basta as selective agent. Embryogenic colonies resistant to Basta appeared from two months after bombardment. Of over 100 independent Basta-resistant sublines tested, 65% expressed the co-transformed reporter gene, even when it was not linked to the selectable marker. Over 80% of the sublines retained their embryogenic potential. Of 11 transformants analyzed, 4 contained transgenes in low copy number (1-3), the rest contained transgenes in up to 15-20 copies. Over 200 Basta-resistant sublines from four cell lines have been established, of which 138 are confirmed as transformed. Plantlets have been regenerated and grown on in pots.


Plant Cell Reports | 2000

Basta tolerance as a selectable and screening marker for transgenic plants of Norway spruce.

Vladimir Brukhin; David E. Clapham; Malin Elfstrand; S. von Arnold

Abstract The bar gene conferring resistance to the herbicide Basta (containing phosphinothricin) was transferred to embryogenic cultures of Picea abies by particle bombardment and transformants were selected on Basta medium. In total, 83 9-month-old transgenic plants of Picea abies from six transformed sublines were analysed for continued tolerance to Basta. PCR analysis showed that the bar gene was present in all transformed plants but not in the control plants. Northern blot analysis showed differences in expression level among plants from the same subline as well as among sublines. A simple biotest for screening for Basta tolerance based on the colour change of detached needles induced by Basta was developed. The tolerance to Basta varied among the plants from different sublines. Needles from four of the sublines were resistant to 100 mg l−1 phosphinothricin, a concentration inducing yellowing in control needles, while plants from the other two sublines were on average two to four times as resistant as untransformed control plants. The biotest enables rapid semi-quantitative monitoring for continued transgene expression in long-lived tree species.


Planta | 2008

Medicago truncatula shows distinct patterns of mycorrhiza-related gene expression after inoculation with three different arbuscular mycorrhizal fungi

Nadja Feddermann; Thomas Boller; Peter Salzer; Sara Elfstrand; Andres Wiemken; Malin Elfstrand

Different arbuscular mycorrhizal fungi (AMF) alter growth and nutrition of a given plant differently. Plant gene expression patterns in response to fungal colonization show a certain overlap when colonized by fungi of the Glomeraceae. However, little is known of plant responses to fungi of different fungal taxa, e.g. the Gigasporaceae. We therefore compared the impact of colonization by three taxonomically different AMF species (Glomus intraradices, Glomus mosseae and Scutellospora castanea) on Medicago truncatula at the physiological and transcriptional level using quantitative-PCR. Each AMF developed a species-typical colonization pattern, with a colonization degree of 60% for G. intraradices and 30% for G. mosseae. Both species developed appressoria, intraradical hyphae, arbuscules and vesicles. S. castanea showed a colonization degree of 10% and developed appressoria, intraradical hyphae, arbuscules and arbusculate coils. All AMF enhanced the plant biomass accumulation and nutritional status although not in correlation with the colonization degree. The expression of 10 mycorrhiza-specific or mycorrhiza-associated plant genes could be separated into two clusters. The first cluster, containing arbuscule-induced genes, was highly induced in interactions with G. intraradices and G. mosseae but also slightly induced by S. castanea. The second cluster of genes contained genes that were induced primarily by S. castanea. In conclusion, genes that respond to colonization by fungi of the genus Glomus also respond to Scutellospora. However, there is also a group of genes that is significantly induced only by Scutellospora and not by Glomus species in this study. Our data indicate that genes may be differentially regulated in response to the different AM fungi.


Fungal Biology | 2004

Extremely low AFLP variation in the European dry rot fungus ( Serpula lacrymans ): implications for self/nonself-recognition

Håvard Kauserud; Olaf Schmidt; Malin Elfstrand; Nils Högberg

The devastating dry rot fungus, Serpula lacrymans, has a worldwide occurrence in buildings. We investigated the genetic variation in European isolates belonging to five vegetative compatibility groups (VCGs) by AFLP analysis. Our results indicate that S. lacrymans in Europe is genetically extremely homogenous; only five out of 308 scored AFLP fragments (1.6 %) were polymorphic. In contrast, S. himantioides, the closest relative of S. lacrymans, possessed 31.3 % polymorphic fragments (84 out of 268). AFLP polymorphisms observed in S. lacrymans were distributed independently of the VCG boundaries, indicating that the VCGs do not represent clones but that different genets of S. lacrymans frequently share similar vic alleles due to low genetic variation. Thus, although the European S. lacrymans is genetically extremely homogeneous, and our results suggest that the species reproduces and spreads mainly sexually and not by clones.


Mycologia | 2013

Evolution of RNA interference proteins dicer and argonaute in Basidiomycota

Yang Hu; Jan Stenlid; Malin Elfstrand; Åke Olson

RNA interference (RNAi) refers to a mechanism in which cells control gene expression, protect the genome against mobile repetitive DNA sequences, retro elements and transposons, and defend themself against viruses. Two core components, dicer and argonaute, are central in the RNAi machinery. In this study the evolution of argonaute and dicer genes were analyzed with 43 fungal genomes, with the focus on Basidiomycota. Argonaute and dicer genes are widely represented in Basidiomycota as well as in other fungal groups, but the number of copies of them vary. However, in certain lineages, argonaute or dicer is missing. Our results suggest an ancient duplication of dicer and argonaute genes concurrently with early diversification of the Basidiomycota followed by additional species-specific duplications and losses of more recent origin. Several distinct RNAi pathways exist in fungi, based on structural similarity and phylogenetic relationship, our results indicate that quelling possibly exists in most Basidiomycota, while we could not find any evidence for the MSUD (meiotic-silencing) pathway in Basidiomycota. RNAi has been developed to be an important tool for reverse genetics studies. Because both argonaute and dicer are present in almost all Basidiomycota our results indicate that it should be possible to develop RNAi as a tool for functional studies of genes in most Basidiomycota species.


Planta | 2013

The primary module in Norway spruce defence signalling against H. annosum s.l. seems to be jasmonate-mediated signalling without antagonism of salicylate-mediated signalling

Jenny Arnerup; Miguel Nemesio-Gorriz; Karl Lundén; Fred O. Asiegbu; Jan Stenlid; Malin Elfstrand

A key tree species for the forest industry in Europe is Norway spruce [Picea abies (L.) Karst.]. One of its major diseases is stem and butt rot caused by Heterobasidion parviporum (Fr.) Niemelä & Korhonen, which causes extensive revenue losses every year. In this study, we investigated the parallel induction of Norway spruce genes presumably associated with salicylic acid- and jasmonic acid/ethylene-mediated signalling pathways previously observed in response to H. parviporum. Relative gene expression levels in bark samples of genes involved in the salicylic acid- and jasmonic acid/ethylene-mediated signalling pathways after wounding and inoculation with either the saprotrophic biocontrol fungus Phlebiopsis gigantea or with H. parviporum were analysed with quantitative PCR at the site of the wound and at two distal locations from the wound/inoculation site to evaluate their roles in the induced defence response to H. parviporum in Norway spruce. Treatment of Norway spruce seedlings with methylsalicylate, methyljasmonate and inhibitors of the jasmonic acid/ethylene signalling pathway, as well as the Phenylalanine ammonia lyase inhibitor 2-aminoindan-2-phosphonic acid were conducted to determine the responsiveness of genes characteristic of the different pathways to different hormonal stimuli. The data suggest that jasmonic acid-mediated signalling plays a central role in the induction of the genes analysed in this study irrespective of their responsiveness to salicylic acid. This may suggest that jasmonic acid-mediated signalling is the prioritized module in the Norway spruce defence signalling network against H. parviporum and that there seems to be no immediate antagonism between the modules in this interaction.


Scandinavian Journal of Forest Research | 2010

Variation in growth of Heterobasidion parviporum in a full-sib family of Picea abies

Jenny Arnerup; Gunilla Swedjemark; Malin Elfstrand; Bo Karlsson; Jan Stenlid

Abstract Heterobasidion parviporum (Fr.) Niemelä & Korhonen and Heterobasidion annosum (Fr.) Bref. sensu lato are some of the major forest pathogens in the northern hemisphere causing root and butt rot to conifers. The relative susceptibility to H. parviporum was investigated in a full-sib family of Norway spruce [Picea abies (L.) Karst.] by inoculating a set of 252 cloned progenies from a controlled cross. Four ramets of each progeny were used and the 2-year-old rooted cuttings were incubated for 6 weeks under greenhouse conditions. The condition of the cuttings was assessed visually and all the plants were in excellent vigour with no mortality recorded during the experiment. To score the relative susceptibility, lesion length in the inner bark and fungal growth in the sapwood were measured. Among the progenies, significant differences were found for fungal growth in the sapwood (p<0.0005). There was no significant difference for lesion length; however, there was a significant positive correlation between fungal growth and lesion length. The broad-sense heritability was 0.11 for fungal growth. This shows that the genetic component for susceptibility to H. parviporum can be detected even within a full-sib family of Norway spruce and that there is a potential for mapping quantitative trait loci for this trait in Norway spruce.

Collaboration


Dive into the Malin Elfstrand's collaboration.

Top Co-Authors

Avatar

Jan Stenlid

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Åke Olson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Jenny Arnerup

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Karl Lundén

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Miguel Nemesio-Gorriz

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Folke Sitbon

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Magnus Karlsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Sara von Arnold

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Mårten Lind

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Roger D. Finlay

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge