Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malin Jarvius is active.

Publication


Featured researches published by Malin Jarvius.


Nature Methods | 2006

Direct observation of individual endogenous protein complexes in situ by proximity ligation

Ola Söderberg; Mats Gullberg; Malin Jarvius; Karin Ridderstråle; Karl-Johan Leuchowius; Jonas Jarvius; Kenneth Wester; Per Hydbring; Fuad Bahram; Lars-Gunnar Larsson; Ulf Landegren

Cellular processes can only be understood as the dynamic interplay of molecules. There is a need for techniques to monitor interactions of endogenous proteins directly in individual cells and tissues to reveal the cellular and molecular architecture and its responses to perturbations. Here we report our adaptation of the recently developed proximity ligation method to examine the subcellular localization of protein-protein interactions at single-molecule resolution. Proximity probes—oligonucleotides attached to antibodies against the two target proteins—guided the formation of circular DNA strands when bound in close proximity. The DNA circles in turn served as templates for localized rolling-circle amplification (RCA), allowing individual interacting pairs of protein molecules to be visualized and counted in human cell lines and clinical specimens. We used this method to show specific regulation of protein-protein interactions between endogenous Myc and Max oncogenic transcription factors in response to interferon-γ (IFN-γ) signaling and low-molecular-weight inhibitors.


Methods | 2008

Characterizing proteins and their interactions in cells and tissues using the in situ proximity ligation assay

Ola Söderberg; Karl-Johan Leuchowius; Mats Gullberg; Malin Jarvius; Irene Weibrecht; Lars-Gunnar Larsson; Ulf Landegren

The activity of proteins is typically regulated by secondary modifications and by interactions with other partners, resulting in the formation of protein complexes whose functions depend on the participating proteins. Accordingly, it is of central importance to monitor the presence of interaction complexes as well as their localization, thus providing information about the types of cells where the proteins are located and in what sub-cellular compartment these interactions occur. Several methods for visualizing protein interactions in situ have been developed during the last decade. These methods in most cases involve genetic constructs, and they have been successfully used in assays of living cell maintained in tissue culture, but they cannot easily be implemented in studies of clinical specimens. For such samples, affinity reagents like antibodies can be used to target the interacting proteins. In this review we will describe the in situ proximity ligation assays (in situ PLA), a method that is suitable for visualizing protein interactions in both tissue sections and in vitro cell lines, and we discuss research tasks when this or other method may be selected.


Molecular & Cellular Proteomics | 2007

In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method.

Malin Jarvius; Janna Paulsson; Irene Weibrecht; Karl-Johan Leuchowius; Ann-Catrin Andersson; Carolina Wählby; Mats Gullberg; Johan Botling; Tobias Sjöblom; Boyka Markova; Arne Östman; Ulf Landegren; Ola Söderberg

Improved methods are needed for in situ characterization of post-translational modifications in cell lines and tissues. For example, it is desirable to monitor the phosphorylation status of individual receptor tyrosine kinases in samples from human tumors treated with inhibitors to evaluate therapeutic responses. Unfortunately the leading methods for observing the dynamics of tissue post-translational modifications in situ, immunohistochemistry and immunofluorescence, exhibit limited sensitivity and selectivity. Proximity ligation assay is a novel method that offers improved selectivity through the requirement of dual recognition and increased sensitivity by including DNA amplification as a component of detection of the target molecule. Here we therefore established a generalized in situ proximity ligation assay to investigate phosphorylation of platelet-derived growth factor receptor β (PDGFRβ) in cells stimulated with platelet-derived growth factor BB. Antibodies specific for immunoglobulins from different species, modified by attachment of DNA strands, were used as secondary proximity probes together with a pair of primary antibodies from the corresponding species. Dual recognition of receptors and phosphorylated sites by the primary antibodies in combination with the secondary proximity probes was used to generate circular DNA strands; this was followed by signal amplification by replicating the DNA circles via rolling circle amplification. We detected tyrosine phosphorylated PDGFRβ in human embryonic kidney cells stably overexpressing human influenza hemagglutinin-tagged human PDGFRβ in porcine aortic endothelial cells transfected with the β-receptor, but not in cells transfected with the α-receptor, and also in immortalized human foreskin fibroblasts, BJ hTert, endogenously expressing the PDGFRβ. We furthermore visualized tyrosine phosphorylated PDGFRβ in tissue sections from fresh frozen human scar tissue undergoing wound healing. The method should be of great value to study signal transduction, screen for effects of pharmacological agents, and enhance the diagnostic potential in histopathology.


The EMBO Journal | 2010

VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts

Ingrid Nilsson; Fuad Bahram; Xiujuan Li; Laura Gualandi; Sina Koch; Malin Jarvius; Ola Söderberg; Andrey Anisimov; Ivana Kholová; Bronislaw Pytowski; Megan E. Baldwin; Seppo Ylä-Herttuala; Kari Alitalo; Johan Kreuger; Lena Claesson-Welsh

The vascular endothelial growth factors VEGFA and VEGFC are crucial regulators of vascular development. They exert their effects by dimerization and activation of the cognate receptors VEGFR2 and VEGFR3. Here, we have used in situ proximity ligation to detect receptor complexes in intact endothelial cells. We show that both VEGFA and VEGFC potently induce formation of VEGFR2/‐3 heterodimers. Receptor heterodimers were found in both developing blood vessels and immature lymphatic structures in embryoid bodies. We present evidence that heterodimers frequently localize to tip cell filopodia. Interestingly, in the presence of VEGFC, heterodimers were enriched in the leading tip cells as compared with trailing stalk cells of growing sprouts. Neutralization of VEGFR3 to prevent heterodimer formation in response to VEGFA decreased the extent of angiogenic sprouting. We conclude that VEGFR2/‐3 heterodimers on angiogenic sprouts induced by VEGFA or VEGFC may serve to positively regulate angiogenic sprouting.


Molecular & Cellular Proteomics | 2010

High Content Screening for Inhibitors of Protein Interactions and Post-translational Modifications in Primary Cells by Proximity Ligation

Karl-Johan Leuchowius; Malin Jarvius; Malin Wickström; Linda Rickardson; Ulf Landegren; Rolf Larsson; Ola Söderberg; Mårten Fryknäs; Jonas Jarvius

The cost of developing new drugs is a major obstacle for pharmaceutical companies and academia with many drugs identified in the drug discovery process failing approval for clinical use due to lack of intended effect or because of severe side effects. Since the early 1990s, high throughput screening of drug compounds has increased enormously in capacity but has not resulted in a higher success rate of the identified drugs. Thus, there is a need for methods that can identify biologically relevant compounds and more accurately predict in vivo effects early in the drug discovery process. To address this, we developed a proximity ligation-based assay for high content screening of drug effects on signaling pathways. As a proof of concept, we used the assay to screen through a library of previously identified kinase inhibitors, including six clinically used tyrosine kinase inhibitors, to identify compounds that inhibited the platelet-derived growth factor (PDGF) receptor β signaling pathway in stimulated primary human fibroblasts. Thirteen of the 80 compounds were identified as hits, and the dose responses of these compounds were measured. The assay exhibited a very high Z′ factor (0.71) and signal to noise ratio (11.7), demonstrating excellent ability to identify compounds interfering with the specific signaling event. A comparison with regular immunofluorescence detection of phosphorylated PDGF receptor demonstrated a far superior ability by the in situ proximity ligation assay to reveal inhibition of receptor phosphorylation. In addition, inhibitor-induced perturbation of protein-protein interactions of the PDGF signaling pathway could be quantified, further demonstrating the usefulness of the assay in drug discovery.


Genetic engineering | 2007

Proximity Ligation: A Specific and Versatile Tool for the Proteomic Era

Ola Söderberg; Karl-Johan Leuchowius; Massood Kamali-Moghaddam; Malin Jarvius; Sigrun M. Gustafsdottir; Edith Schallmeiner; Mats Gullberg; Jonas Jarvius; Ulf Landegren

Knowledge about the total human genome sequence now provides opportunities to study its myriad gene products. However, the presence of alternative splicing, post-translational modifications, and innumerable protein-protein interactions among proteins occurring at widely different concentrations, all combine to place extreme demands on the specificity and sensitivity of assays. The choice of method also depends on matters such as whether proteins will be analyzed in body fluids and lysates, or localized inside single cells. In this review we discuss commonly used detection methods and compare these to the recently-developed proximity ligation technique.


International Journal of Cancer | 2011

Prognostic but not predictive role of platelet-derived growth factor receptors in patients with recurrent glioblastoma

Janna Paulsson; Maja Bradic Lindh; Malin Jarvius; Marjut Puputti; Monica Nistér; Nina N. Nupponen; Werner Paulus; Ola Söderberg; Gregor Dresemann; Andreas von Deimling; Heikki Joensuu; Arne Östman; Martin Hasselblatt

Platelet‐derived growth factor receptor (PDGFR) signaling has been implicated in the pathogenesis of glioblastomas and represents a target for the tyrosine kinase inhibitor imatinib. To examine the prognostic or predictive role of PDGFRs in recurrent glioblastomas, expression was examined in tumor samples of 101 patients of CSTI571BDE40, a randomized trial comparing hydroxyurea monotherapy and a combination of hydroxyurea and imatinib. Furthermore, PDGFRα phosphorylation was investigated using in situ proximity ligation assay. PDGFRα protein was expressed in 33% of tumors and was associated with male sex, young age, presence of R132H mutated isocitrate dehydrogenase 1 protein and short median survival (142 vs. 187 days, p = 0.028). Tumor PDGFRα phosphorylation was also associated with short survival (p = 0.030). The subset of patients with PDGFRα positive glioblastoma did not have longer survival on treatment with hydroxyurea and imatinib compared with hydroxyurea monotherapy. In conclusion, both PDGFRα protein expression and phosphorylation status had a prognostic role in recurrent glioblastomas but did not define a group that showed benefit from the combination therapy consisting of hydroxyurea and imatinib.


Biochemical and Biophysical Research Communications | 2013

Piperlongumine induces inhibition of the ubiquitin-proteasome system in cancer cells.

Malin Jarvius; Mårten Fryknäs; Padraig D’Arcy; Chao Sun; Linda Rickardson; Joachim Gullbo; Caroline Haglund; Peter Nygren; Stig Linder; Rolf Larsson

Piperlongumine, a natural product from the plant Piperlongum, has demonstrated selective cytotoxicity to tumor cells and to show anti-tumor activity in animal models [1]. Cytotoxicity of piperlongumine has been attributed to increase in reactive oxygen species (ROS) in cancer cells. We here report that piperlongumine is an inhibitor of the ubiquitin-proteasome system (UPS). Exposure of tumor cells to piperlongumine resulted in accumulation of a reporter substrate known to be rapidly degraded by the proteasome, and of accumulation of ubiquitin conjugated proteins. However, no inhibition of 20S proteolytic activity or 19S deubiquitinating activity was observed at concentrations inducing cytotoxicity. Consistent with previous reports, piperlongumine induced strong ROS activation which correlated closely with UPS inhibition and cytotoxicity. Proteasomal blocking could not be mimicked by agents that induce oxidative stress. Our results suggest that the anti-cancer activity of piperlongumine involves inhibition of the UPS at a pre-proteasomal step, prior to deubiquitination of malfolded protein substrates at the proteasome, and that the previously reported induction of ROS is a consequence of this inhibition.


American Journal of Pathology | 2009

Platelet-Derived Growth Factor Receptor Expression and Activation in Choroid Plexus Tumors

Björn Koos; Janna Paulsson; Malin Jarvius; Betzabe Chavez Sanchez; Brigitte Wrede; Sonja Mertsch; Astrid Jeibmann; Anne Kruse; Ove Peters; Johannes Wolff; Hans Joachim Galla; Ola Söderberg; Werner Paulus; Arne Östman; Martin Hasselblatt

Choroid plexus tumors are intraventricular neoplasms predominantly affecting young children. In contrast to choroid plexus papillomas, choroid plexus carcinomas progress frequently, necessitating the development of adjuvant treatment concepts. Platelet derived growth factor (PDGF) signaling has been shown to support growth in a variety of tumors. The finding of PDGF receptor expression in choroid plexus tumors prompted us to elucidate PDGF receptor activation state using a novel method, in situ proximity ligation assay, on formalin-fixed, paraffin-embedded, archival samples of 19 choroid plexus tumors. As assessed by in situ proximity ligation assay, the proportion of phosphorylated PDGF receptor alpha was low in choroid plexus papillomas and choroid plexus carcinomas, whereas phosphorylated PDGF receptor beta was found to be significantly higher in choroid plexus carcinomas. In the immortalized choroid plexus epithelial cell line Z310 expressing PDGF receptor beta, PDGF-BB exhibited a time- and dose-dependent proliferative response, which was significantly attenuated by imatinib (gleevec). In conclusion, our findings suggest that PDGF receptor beta is functionally involved in the biology of choroid plexus tumors and may represent a molecular target for therapy. In addition, this study demonstrates the feasibility and usefulness of in situ proximity ligation assay for monitoring receptor tyrosine kinase activation in formalin-fixed, paraffin-embedded, archival tissues.


Cell Reports | 2016

Clonal Variation in Drug and Radiation Response among Glioma-Initiating Cells Is Linked to Proneural-Mesenchymal Transition

Anna Segerman; Mia Niklasson; Caroline Haglund; Tobias Bergström; Malin Jarvius; Yuan Xie; Ann Westermark; Demet Sönmez; Annika Hermansson; Marianne Kastemar; Zeinab Naimaie-Ali; Frida Nyberg; Malin Berglund; Magnus Sundström; Göran Hesselager; Lene Uhrbom; Mats G. Gustafsson; Rolf Larsson; Mårten Fryknäs; Bo Segerman; Bengt Westermark

Intratumoral heterogeneity is a hallmark of glioblastoma multiforme and thought to negatively affect treatment efficacy. Here, we establish libraries of glioma-initiating cell (GIC) clones from patient samples and find extensive molecular and phenotypic variability among clones, including a range of responses to radiation and drugs. This widespread variability was observed as a continuum of multitherapy resistance phenotypes linked to a proneural-mesenchymal shift in the transcriptome. Multitherapy resistance was associated with a semi-stable cell state that was characterized by an altered DNA methylation pattern at promoter regions of mesenchymal master regulators and enhancers. The gradient of cell states within the GIC compartment constitutes a distinct form of heterogeneity. Our findings may open an avenue toward the development of new therapeutic rationales designed to reverse resistant cell states.

Collaboration


Dive into the Malin Jarvius's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ola Söderberg

Science for Life Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge