Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malliga E. Ganapathy is active.

Publication


Featured researches published by Malliga E. Ganapathy.


Journal of Pharmaceutical Sciences | 2000

Transport of Valganciclovir, a Ganciclovir Prodrug, via Peptide Transporters PEPT1 and PEPT2

Mitsuru Sugawara; Wei Huang; You-Jun Fei; Frederick H. Leibach; Vadivel Ganapathy; Malliga E. Ganapathy

In clinical trials, valganciclovir, the valyl ester of ganciclovir, has been shown to enhance the bioavailability of ganciclovir when taken orally by patients with cytomegalovirus infection. We investigated the role of the intestinal peptide transporter PEPT1 in this process by comparing the interaction of ganciclovir and valganciclovir with the transporter in different experimental systems. We also studied the interaction of these two compounds with the renal peptide transporter PEPT2. In cell culture model systems using Caco-2 cells for PEPT1 and SKPT cells for PEPT2, valganciclovir inhibited glycylsarcosine transport mediated by PEPT1 and PEPT2 with K(i) values (inhibition constant) of 1.68+/-0.30 and 0.043+/- 0.005 mM, respectively. The inhibition by valganciclovir was competitive in both cases. Ganciclovir did not interact with either transporter. Similar studies done with cloned PEPT1 and PEPT2 in heterologous expression systems yielded comparable results. The transport of valganciclovir via PEPT1 was investigated directly in PEPT1-expressing Xenopus laevis oocytes with an electrophysiological approach. Valganciclovir, but not ganciclovir, induced inward currents in PEPT1-expressing oocytes. These results demonstrate that the increased bioavailability of valganciclovir is related to its recognition as a substrate by the intestinal peptide transporter PEPT1. This prodrug is also recognized by the renal peptide transporter PEPT2 with high affinity.


Journal of Biological Chemistry | 1995

Differential Recognition of β-Lactam Antibiotics by Intestinal and Renal Peptide Transporters, PEPT 1 and PEPT 2

Malliga E. Ganapathy; Matthias Brandsch; Puttur D. Prasad; Vadivel Ganapathy; Frederick H. Leibach

This study was initiated to determine if there are differences in the recognition of β-lactam antibiotics as substrates between intestinal and renal peptide transporters, PEPT 1 and PEPT 2. Reverse transcription-coupled polymerase chain reaction and/or Northern blot analysis have established that the human intestinal cell line Caco-2 expresses PEPT 1 but not PEPT 2, whereas the rat proximal tubule cell line SKPT expresses PEPT 2 but not PEPT 1. Detailed kinetic analysis has provided unequivocal evidence for participation of PEPT 2 in SKPT cells in the transport of the dipeptide glycylsarcosine and the aminocephalosporin cephalexin. The substrate recognition pattern of PEPT 1 and PEPT 2 was studied with cefadroxil (a cephalosporin) and cyclacillin (a penicillin) as model substrates for the peptide transporters constitutively expressed in Caco-2 cells (PEPT 1) and SKPT cells (PEPT 2). Cyclacillin was 9-fold more potent than cefadroxil in competing with glycylsarcosine for uptake via PEPT 1. In contrast, cefadroxil was 13-fold more potent than cyclacillin in competing with the dipeptide for uptake via PEPT 2. The substrate recognition pattern of PEPT 1 and PEPT 2 was also investigated using cloned human peptide transporters functionally expressed in HeLa cells. Expression of PEPT 1 or PEPT 2 in HeLa cells was found to induce H+-coupled cephalexin uptake in these cells. As was the case with Caco-2 cells and SKPT cells, the uptake of glycylsarcosine induced in HeLa cells by PEPT 1 cDNA and PEPT 2 cDNA was inhibitable by cyclacillin and cefadroxil. Again, the PEPT 1 cDNA-induced dipeptide uptake was inhibited more potently by cyclacillin than by cefadroxil, and the PEPT 2 cDNA-induced dipeptide uptake was inhibited more potently by cefadroxil than by cyclacillin. It is concluded that there are marked differences between the intestinal and renal peptide transporters in the recognition of β-lactam antibiotics as substrates.


Biochimica et Biophysica Acta | 1995

Molecular cloning of PEPT 2, a new member of the H+/peptide cotransporter family, from human kidney.

Wei Liu; Rong Liang; Sammanda Ramamoorthy; You-Jun Fei; Malliga E. Ganapathy; Matthias A. Hediger; Vadivel Ganapathy; Frederick H. Leibach

Mammalian kidney is known to express a transport system specific for small peptides and pharmacologically active aminocephalosporins. This system is energized by a transmembrane electrochemical H+ gradient. Recently, a H(+)-coupled peptide transporter has been cloned from rabbit and human intestine (Fei et al. (1994) Nature 368, 563-566; Liang et al., J. Biol. Chem., in press). Functional studies have established that the renal peptide transport system is similar but not identical to its intestinal counterpart. Therefore, in an attempt to isolate the renal H+/peptide cotransporter cDNA, we screened a human kidney cDNA library with a probe derived from the rabbit intestinal H+/peptide cotransporter cDNA. This has resulted in the isolation of a positive clone with a 2190 bp long open reading frame. The predicted protein consists of 729 amino acids. Hydropathy analysis of the amino acid sequence indicates the presence of twelve putative transmembrane domains. The primary structure of this protein exhibits 50% identity and 70% similarity to the human intestinal H+/peptide cotransporter. Functional expression of the kidney cDNA in HeLa cells results in the induction of a H(+)-coupled transport system specific for small peptides and aminocephalosporins. Reverse transcription-coupled polymerase chain reaction demonstrates that the cloned transporter is expressed in human kidney but not in human intestine. This transporter, henceforth called PEPT 2, represents a new member in the growing family of H(+)-coupled transport systems in the mammalian plasma membrane.


Journal of Biological Chemistry | 2000

β-Lactam Antibiotics as Substrates for OCTN2, an Organic Cation/Carnitine Transporter

Malliga E. Ganapathy; Wei Huang; D. Prasanna Rajan; A. Lee Carter; Mitsuru Sugawara; Ken Iseki; Frederick H. Leibach; Vadivel Ganapathy

Therapeutic use of cephaloridine, a β-lactam antibiotic, in humans is associated with carnitine deficiency. A potential mechanism for the development of carnitine deficiency is competition between cephaloridine and carnitine for the renal reabsorptive process. OCTN2 is an organic cation/carnitine transporter that is responsible for Na+-coupled transport of carnitine in the kidney and other tissues. We investigated the interaction of several β-lactam antibiotics with OCTN2 using human cell lines that express the transporter constitutively as well as using cloned human and rat OCTN2s expressed heterologously in human cell lines. The β-lactam antibiotics cephaloridine, cefoselis, cefepime, and cefluprenam were found to inhibit OCTN2-mediated carnitine transport. These antibiotics possess a quaternary nitrogen as does carnitine. Several other β-lactam antibiotics that do not possess this structural feature did not interact with OCTN2. The interaction of cephaloridine with OCTN2 is competitive with respect to carnitine. Interestingly, many of the β-lactam antibiotics that were not recognized by OCTN2 were good substrates for the H+-coupled peptide transporters PEPT1 and PEPT2. In contrast, cephaloridine, cefoselis, cefepime, and cefluprenam, which were recognized by OCTN2, did not interact with PEPT1 and PEPT2. The interaction of cephaloridine with OCTN2 was Na+-dependent, whereas the interaction of cefoselis and cefepime with OCTN2 was largely Na+-independent. Furthermore, the Na+-dependent, OCTN2-mediated cellular uptake of cephaloridine could be demonstrated by direct uptake measurements. These studies show that OCTN2 plays a crucial role in the pharmacokinetics and therapeutic efficacy of certain β-lactam antibiotics such as cephaloridine and that cephaloridine-induced carnitine deficiency is likely to be due to inhibition of carnitine reabsorption in the kidney.


Biochimica et Biophysica Acta | 2000

Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle.

Mitsuru Sugawara; Takeo Nakanishi; You Jun Fei; Robert G. Martindale; Malliga E. Ganapathy; Frederick H. Leibach; Vadivel Ganapathy

To date, two different transporters that are capable of transporting alpha-(methylamino)isobutyric acid, the specific substrate for amino acid transport system A, have been cloned. These two transporters are known as ATA1 and ATA2. We have cloned a third transporter that is able to transport the system A-specific substrate. This new transporter, cloned from rat skeletal muscle and designated rATA3, consists of 547 amino acids and has a high degree of homology to rat ATA1 (47% identity) and rat ATA2 (57% identity). rATA3 mRNA is present only in the liver and skeletal muscle. When expressed in Xenopus laevis oocytes, rATA3 mediates the transport of alpha-[(14)C](methylamino)isobutyric acid and [(3)H]alanine. With the two-microelectrode voltage clamp technique, we have shown that exposure of rATA3-expressing oocytes to neutral, short-chain aliphatic amino acids induces inward currents. The amino acid-induced current is Na(+)-dependent and pH-dependent. Analysis of the currents with alanine as the substrate has shown that the K(0. 5) for alanine (i.e., concentration of the amino acid yielding half-maximal current) is 4.2+/-0.1 mM and that the Na(+):alanine stoichiometry is 1:1.


Biochimica et Biophysica Acta | 1997

Interaction of anionic cephalosporins with the intestinal and renal peptide transporters PEPT 1 and PEPT 2.

Malliga E. Ganapathy; Puttur D. Prasad; Bryan Mackenzie; Vadivel Ganapathy; Frederick H. Leibach

The present study was undertaken to investigate the interaction of anionic cephalosporins (cefixime, ceftibuten, and cefdinir) with the renal peptide transporter (PEPT 2) and the intestinal peptide transporter (PEPT 1) using four different experimental model systems. In the first approach, the human colon carcinoma cell line Caco-2 which expresses PEPT 1 and the SHR rat kidney cell line SKPT which expresses PEPT 2 were used. The uptake of the dipeptide Gly-Sar mediated by PEPT 1 or PEPT 2 in these cells was inhibited significantly by the anionic cephalosporins, with the following order of potency: ceftibuten > cefixime > cefdinir. The inhibition was competitive in nature. Even though the order of potency was the same for PEPT 1 and PEPT 2, PEPT 1 exhibited much lesser sensitivity to inhibition than PEPT 2. In the second approach, the cloned human PEPT 1 and PEPT 2 were functionally expressed in HeLa cells following which the cells were used to study the interaction of anionic cephalosporins with PEPT 1 and PEPT 2. Again, Gly-Sar uptake mediated by the human PEPT 1 and PEPT 2 in HeLa cells was found to be inhibited by the anionic cephalosporins with the same order potency as in Caco-2 and SKPT cells. In the third approach, brush border membrane vesicles isolated from rat kidneys were employed. In this approach also it was found that PEPT 2-mediated Gly-Sar uptake was inhibited by cefixime and ceftibuten. In the fourth approach, the human PEPT 1 was expressed in Xenopus laevis oocytes and PEPT 1-mediated transport of ceftibuten was investigated directly by electrophysiological methods. Ceftibuten evoked inward currents in PEPT 1-expressing oocytes but not in water-injected oocytes, showing that the transport of the anionic cephalosporin via PEPT 1 is associated with transfer of positive charge. The ceftibuten-evoked currents were saturable with respect to ceftibuten concentration and were markedly dependent on membrane potential. It is concluded that anionic cephalosporins interact with the peptide transporters expressed in the intestine (PEPT 1) as well as in the kidney (PEPT 2).


Biochimica et Biophysica Acta | 2001

Expression pattern of the type 1 sigma receptor in the brain and identity of critical anionic amino acid residues in the ligand-binding domain of the receptor

Pankaj Seth; Malliga E. Ganapathy; Simon J. Conway; Christy D Bridges; Sylvia B. Smith; Pierre Casellas; Vadivel Ganapathy

The type 1 sigma receptor (sigmaR1) has been shown to participate in a variety of functions in the central nervous system. To identify the specific regions of the brain that are involved in sigmaR1 function, we analyzed the expression pattern of the receptor mRNA in the mouse brain by in situ hybridization. SigmaR1 mRNA was detectable primarily in the cerebral cortex, hippocampus, and Purkinje cells of cerebellum. To identify the critical anionic amino acid residues in the ligand-binding domain of sigmaR1, we employed two different approaches: chemical modification of anionic amino acid residues and site-directed mutagenesis. Chemical modification of anionic amino acids in sigmaR1 with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide reduced the ligand-binding activity markedly. Since it is known that a splice variant of this receptor which lacks exon 3 does not have the ability to bind sigma ligands, the ligand-binding domain with its critical anionic amino acid residues is likely to be present in or around the region coded by exon 3. Therefore, each of the anionic amino acids in this region was mutated individually and the influence of each mutation on ligand binding was assessed. These studies have identified two anionic amino acids, D126 and E172, that are obligatory for ligand binding. Even though the ligand-binding function was abolished by these two mutations, the expression of these mutants was normal at the protein level. These results show that sigmaR1 is expressed at high levels in specific areas of the brain that are involved in memory, emotion and motor functions. The results also provide important information on the chemical nature of the ligand-binding site of sigmaR1 that may be of use in the design of sigmaR1-specific ligands with potential for modulation of sigmaR1-related brain functions.


Advanced Drug Delivery Reviews | 1999

Drugs of abuse and placental transport.

Vadivel Ganapathy; Puttur D. Prasad; Malliga E. Ganapathy; Frederick H. Leibach

The placenta provides the only link between the mother and the developing fetus. The function of the placenta as a transport organ is obligatory for fetal development because this process, mediated by a variety of transport systems, is responsible for the delivery of nutrients from the mother to the fetus. Some of the transport systems in the placenta also play a role in the clearance of vasoactive compounds, thus maintaining optimal blood flow to this organ. There is strong supporting evidence to indicate that several of these placental transport systems are either direct or indirect targets for the abusable drugs cocaine, amphetamines, nicotine, and cannabinoids. These drugs of abuse compromise the placental transport function and consequently produce detrimental effects on the developing fetus.


Journal of Clinical Investigation | 2001

Na+ - and Cl- -coupled active transport of nitric oxide synthase inhibitors via amino acid transport system B(0,+).

Takahiro Hatanaka; Takeo Nakanishi; Wei Huang; Frederick H. Leibach; Puttur D. Prasad; Vadivel Ganapathy; Malliga E. Ganapathy

Nitric oxide synthase (NOS) inhibitors have therapeutic potential in the management of numerous conditions in which NO overproduction plays a critical role. Identification of transport systems in the intestine that can mediate the uptake of NOS inhibitors is important to assess the oral bioavailability and therapeutic efficacy of these potential drugs. Here, we have cloned the Na+ - and Cl- -coupled amino acid transport system B(0,+) (ATB(0,+)) from the mouse colon and investigated its ability to transport NOS inhibitors. When expressed in mammalian cells, ATB(0,+) can transport a variety of zwitterionic and cationic amino acids in a Na+ - and Cl- -coupled manner. Each of the NOS inhibitors tested compete with glycine for uptake through this transport system. Furthermore, using a tritiated analog of the NOS inhibitor N(G)-nitro-L-arginine, we showed that Na+ - and Cl- -coupled transport occurs via ATB(0,+). We then studied transport of a wide variety of NOS inhibitors in Xenopus laevis oocytes expressing the cloned ATB(0,+) and found that ATB(0,+) can transport a broad range of zwitterionic or cationic NOS inhibitors. These data represent the first identification of an ion gradient-driven transport system for NOS inhibitors in the intestinal tract.


Pharmaceutical Research | 2004

Transport of Amino Acid Esters and the Amino-Acid-Based Prodrug Valganciclovir by the Amino Acid Transporter ATB0,+

Nagavedi S. Umapathy; Vadivel Ganapathy; Malliga E. Ganapathy

AbstractPurpose. The purpose of this study was to analyze the transport of amino acid esters and the amino-acid-based prodrug valganciclovir by the Na+/Cl−-coupled amino acid transporter ATB0,+. Methods. The interaction of amino acid esters and valganciclovir with the cloned rat ATB0,+ was evaluated in a mammalian cell expression system and in the Xenopus oocyte expression system. Results. In mammalian cells, expression of ATB0,+ induced glycine uptake. This uptake was inhibited by valine and its methyl, butyl, and benzyl esters. The benzyl esters of other neutral amino acids were also effective inhibitors. Valganciclovir, the valyl ester of ganciclovir, was also found to inhibit ATB0,+-mediated glycine uptake competitively. Exposure of ATB0,+-expressing oocytes to glycine induced inward currents. Exposure to different valyl esters (methyl, butyl, and benzyl), benzyl esters of various neutral amino acids, and valganciclovir also induced inward currents in these oocytes. The current induced by valganciclovir was saturable with a K0.5 value of 3.1 ± 0.7 mM and was obligatorily dependent on Na+ and Cl−. The Na+:Cl−:valganciclovir stoichiometry was 2 or 3:1:1. Conclusions Amino acid esters and the amino-acid-based prodrug valganciclovir are transported by ATB0,+. This shows that ATB0,+ can serve as an effective delivery system for amino acid-based prodrugs.

Collaboration


Dive into the Malliga E. Ganapathy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Huang

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sylvia B. Smith

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

V. Ganapathy

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lawrence D. Devoe

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge