Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mallory A. Jensen is active.

Publication


Featured researches published by Mallory A. Jensen.


IEEE Journal of Photovoltaics | 2016

Engineering Solutions and Root-Cause Analysis for Light-Induced Degradation in p -Type Multicrystalline Silicon PERC Modules

Kenta Nakayashiki; Jasmin Hofstetter; Ashley E. Morishige; Tsu-Tsung Andrew Li; David Berney Needleman; Mallory A. Jensen; Tonio Buonassisi

We identify two engineering solutions to mitigate light-induced degradation (LID) in p-type multicrystalline silicon passivated emitter and rear cells, including modification of metallization firing temperature and wafer quality. Lifetime measurements on etched-back samples confirm that LID has a strong bulk component. Spatially resolved lifetime maps indicate that the defects responsible for LID are dispersed ubiquitously across the wafer. Reversibility of LID upon low-temperature annealing suggests a low-activation-energy barrier inconsistent with precipitated impurity dissolution. Lifetime spectroscopy of the LID-affected state reveals an asymmetry of electron and hole capture cross sections of ~28.5, consistent with a deep-level donor point defect (e.g., interstitial Ti, interstitial Mo, substitutional W), charged nanoprecipitate, or charged structural defect, such as a dislocation. Finally, we explain two possible root causes of this LID, including 1) a point-defect complex involving a hydrogen atom and a deep-level donor and 2) configurational change of a point-defect complex involving fast-diffusing impurities.


Applied Physics Letters | 2015

Synchrotron-based analysis of chromium distributions in multicrystalline silicon for solar cells

Mallory A. Jensen; Jasmin Hofstetter; Ashley E. Morishige; Gianluca Coletti; Barry Lai; David P. Fenning; Tonio Buonassisi

Chromium (Cr) can degrade silicon wafer-based solar cell efficiencies at concentrations as low as 1010 cm−3. In this contribution, we employ synchrotron-based X-ray fluorescence microscopy to study chromium distributions in multicrystalline silicon in as-grown material and after phosphorous diffusion. We complement quantified precipitate size and spatial distribution with interstitial Cr concentration and minority carrier lifetime measurements to provide insight into chromium gettering kinetics and offer suggestions for minimizing the device impacts of chromium. We observe that Cr-rich precipitates in as-grown material are generally smaller than iron-rich precipitates and that Cri point defects account for only one-half of the total Cr in the as-grown material. This observation is consistent with previous hypotheses that Cr transport and CrSi2 growth are more strongly diffusion-limited during ingot cooling. We apply two phosphorous diffusion gettering profiles that both increase minority carrier lifetime ...


IEEE Journal of Photovoltaics | 2016

Lifetime Spectroscopy Investigation of Light-Induced Degradation in p-type Multicrystalline Silicon PERC

Ashley E. Morishige; Mallory A. Jensen; David Berney Needleman; Kenta Nakayashiki; Jasmin Hofstetter; Tsu-Tsung Andrew Li; Tonio Buonassisi

When untreated, light-induced degradation (LID) of p-type multicrystalline silicon (mc-Si)-based passivated emitter and rear cell (PERC) modules can reduce power output by up to 10% relative during sun-soaking under open-circuit conditions. Identifying the root cause of this form of LID has been the subject of several recent investigations. Lifetime spectroscopy analysis, including both injection and temperature dependencies (IDLS and TIDLS), may offer insight into the root-cause defect(s). In this paper, to illustrate the root-case defect identification method, we apply room-temperature IDLS to intentionally Cr-contaminated mc-Si. Then, we apply this technique to the p-type mc-Si that exhibits LID in PERC devices, and we provide further insights by analyzing qualitatively the injection-dependent lifetime as a function of temperature. We quantify the sensitivity of the capture cross-section ratio to variations in the measured lifetime curve and in the surface recombination. We find that the responsible defect most likely has an energy level between 0.3 and 0.7 eV above the valence band and a capture cross-section ratio between 26 and 36. Additionally, we calculate the concentrations of several candidate impurities that may cause the degradation.


IEEE Journal of Photovoltaics | 2016

High-Performance and Traditional Multicrystalline Silicon: Comparing Gettering Responses and Lifetime-Limiting Defects

Sergio Castellanos; Kai Erik Ekstrøm; Antoine Autruffe; Mallory A. Jensen; Ashley E. Morishige; Jasmin Hofstetter; Patricia X. T. Yen; Barry Lai; Gaute Stokkan; Carlos del Cañizo; Tonio Buonassisi

In recent years, high-performance multicrystalline silicon (HPMC-Si) has emerged as an attractive alternative to traditional ingot-based multicrystalline silicon (mc-Si), with a similar cost structure but improved cell performance. Herein, we evaluate the gettering response of traditional mc-Si and HPMC-Si. Microanalytical techniques demonstrate that HPMC-Si and mc-Si share similar lifetime-limiting defect types but have different relative concentrations and distributions. HPMC-Si shows a substantial lifetime improvement after P-gettering compared with mc-Si, chiefly because of lower area fraction of dislocation-rich clusters. In both materials, the dislocation clusters and grain boundaries were associated with relatively higher interstitial iron point-defect concentrations after diffusion, which is suggestive of dissolving metal-impurity precipitates. The relatively fewer dislocation clusters in HPMC-Si are shown to exhibit similar characteristics to those found in mc-Si. Given similar governing principles, a proxy to determine relative recombination activity of dislocation clusters developed for mc-Si is successfully transferred to HPMC-Si. The lifetime in the remainder of HPMC-Si material is found to be limited by grain-boundary recombination. To reduce the recombination activity of grain boundaries in HPMC-Si, coordinated impurity control during growth, gettering, and passivation must be developed.


Applied Physics Letters | 2017

Recombination parameters of lifetime-limiting carrier-induced defects in multicrystalline silicon for solar cells

Carlos Vargas; Yan Zhu; Gianluca Coletti; Catherine Chan; David Payne; Mallory A. Jensen; Ziv Hameiri

In p-type multicrystalline silicon solar cells, carrier-induced degradation (CID) can cause up to 10% relative reduction in conversion efficiency. Although, a great concern has been drawn on this degradation in the photovoltaic community, the nature of this degradation is still yet unknown. In this contribution, the recombination parameters of the responsible defect causing this degradation are extracted via temperature and injection dependent lifetime spectroscopy. Three wafers from three different ingots were processed into cell precursor and lifetime structures for the study. Similar defect recombination parameters were obtained for all samples. Two candidates for the defect energy level were identified: Et − Ei = −(0.32 ± 0.05) eV or Et − Ei = (0.21 ± 0.05) eV in the lower and upper bandgap halves, respectively. The capture cross section ratios were found to be k = 56 ± 23 or k = 49 ± 21 for the lower and upper bandgap halves, respectively. Contrary to previous studies, these parameters have been extr...


Applied Physics Letters | 2016

Synchrotron-based investigation of transition-metal getterability in n -type multicrystalline silicon

Ashley E. Morishige; Mallory A. Jensen; Jasmin Hofstetter; Patricia X. T. Yen; Chenlei Wang; Barry Lai; David P. Fenning; Tonio Buonassisi

Solar cells based on n-type multicrystalline silicon (mc-Si) wafers are a promising path to reduce the cost per kWh of photovoltaics; however, the full potential of the material and how to optimally process it are still unknown. Process optimization requires knowledge of the response of the metal-silicide precipitate distribution to processing, which has yet to be directly measured and quantified. To supply this missing piece, we use synchrotron-based micro-X-ray fluorescence (μ-XRF) to quantitatively map >250 metal-rich particles in n-type mc-Si wafers before and after phosphorus diffusion gettering (PDG). We find that 820 °C PDG is sufficient to remove precipitates of fast-diffusing impurities and that 920 °C PDG can eliminate precipitated Fe to below the detection limit of μ-XRF. Thus, the evolution of precipitated metal impurities during PDG is observed to be similar for n- and p-type mc-Si, an observation consistent with calculations of the driving forces for precipitate dissolution and segregation g...


IEEE Journal of Photovoltaics | 2017

Evolution of LeTID Defects in p-Type Multicrystalline Silicon During Degradation and Regeneration

Mallory A. Jensen; Ashley E. Morishige; Jasmin Hofstetter; David Berney Needleman; Tonio Buonassisi

While progress has been made in developing engineering solutions and understanding light- and elevated temperature-induced degradation (LeTID) in p-type multicrystalline silicon (mc-Si), open questions remain regarding the root cause of LeTID. Previously, lifetime spectroscopy of multicrystalline silicon (mc-Si) passivated emitter and rear cell semifabricates in the unaffected and the degraded states enabled identification of the effective recombination parameters of the responsible defect. To gain further insight into the root cause of LeTID, in this paper, we measure the injection-dependent lifetime throughout degradation and regeneration and perform lifetime spectroscopy at several time points. Our analysis indicates that the change in lifetime during most of the process can be described by a corresponding change in the concentration of a single responsible defect. We also explore further exposure to light and temperature after nearly complete regeneration and a subsequent dark anneal to demonstrate that the behavior is no longer consistent with LeTID and the same defect is not detected by lifetime spectroscopy at maximum degradation. We consider our results in the context of the proposed hypotheses for LeTID and conclude that both hydrogenation and precipitate dissolution during firing are consistent with our results.


Journal of Applied Physics | 2016

Exceptional gettering response of epitaxially grown kerfless silicon

Douglas M. Powell; V. P. Markevich; Jasmin Hofstetter; Mallory A. Jensen; Ashley E. Morishige; Sergio Castellanos; Barry Lai; A. R. Peaker; Tonio Buonassisi

The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500× during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentration of point defects (likely Pt) is “locked in” during fast (60 °C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomerates at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but highe...


Journal of Applied Physics | 2016

Identification of lifetime limiting defects by temperature- and injection-dependent photoluminescence imaging

Jonas Schön; Amanda Youssef; Sungeun Park; Laura E. Mundt; Tim Niewelt; Sebastian Mack; Kazuo Nakajima; Kohei Morishita; Ryota Murai; Mallory A. Jensen; Tonio Buonassisi; Martin C. Schubert

Identification of the lifetime limiting defects in silicon plays a key role in systematically optimizing the efficiency potential of material for solar cells. We present a technique based on temperature and injection dependent photoluminescence imaging to determine the energy levels and capture cross section ratios of Shockley–Read–Hall defects. This allows us to identify homogeneously and inhomogeneously distributed defects limiting the charge carrier lifetime in any silicon wafer. The technique is demonstrated on an n-type wafer grown with the non-contact crucible (NOC) method and an industrial Czochralski (Cz) wafer prone to defect formation during high temperature processing. We find that the energy levels for the circular distributed defects in the Cz wafer are in good agreement with literature data for homogeneously grown oxide precipitates. In contrast, the circular distributed defects found in NOC Si have significantly deeper trap levels, despite their similar appearance.


photovoltaic specialists conference | 2014

Elucidating and engineering recombination-active metal-rich precipitates in n-type multicrystalline silicon

Ashley E. Morishige; David P. Fenning; Jasmin Hofstetter; Mallory A. Jensen; Saptharishi Ramanathan; Chenlei Wang; Barry Lai; Tonio Buonassisi

Solar cells based on n-type upgraded metallurgical grade multicrystalline silicon (mc-Si) substrates may be a promising path for reducing the cost per watt of photovoltaics. The detrimental effect of metal point defects in both n- and p-type silicon is known, but the recombination activity of metal-silicide precipitates, especially in n-type mc-Si, is still not well established, impeding modeling and process optimization efforts. In this contribution, we provide a rationale for why metal-rich precipitates may limit minority-carrier lifetime in n-type mc-Si, in contrast to as-grown p-type mc-Si, which is dominated by metal point defects. Using μ-XRF, we identify metal-rich precipitates along a recombination active grain boundary in the low-lifetime “red zone” region of n-type wafers from a corner brick. To reduce the concentration of precipitated metals, we phosphorus-diffuse the wafers. Grain boundaries remain recombination active, which may be attributed to incomplete gettering of point defects and dissolution of recombination-active metal-rich precipitates.

Collaboration


Dive into the Mallory A. Jensen's collaboration.

Top Co-Authors

Avatar

Tonio Buonassisi

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ashley E. Morishige

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Barry Lai

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Jasmin Hofstetter

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Amanda Youssef

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Erin E. Looney

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas M. Powell

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Sergio Castellanos

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge