Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malou van den Boogaard is active.

Publication


Featured researches published by Malou van den Boogaard.


Journal of Clinical Investigation | 2012

Genetic variation in T-box binding element functionally affects SCN5A/SCN10A enhancer

Malou van den Boogaard; L.Y. Elaine Wong; Federico Tessadori; Martijn L. Bakker; Lisa K. Dreizehnter; Vincent Wakker; Connie R. Bezzina; Peter A. C. 't Hoen; Jeroen Bakkers; Phil Barnett; Vincent M. Christoffels

The contraction pattern of the heart relies on the activation and conduction of the electrical impulse. Perturbations of cardiac conduction have been associated with congenital and acquired arrhythmias as well as cardiac arrest. The pattern of conduction depends on the regulation of heterogeneous gene expression by key transcription factors and transcriptional enhancers. Here, we assessed the genome-wide occupation of conduction system-regulating transcription factors TBX3, NKX2-5, and GATA4 and of enhancer-associated coactivator p300 in the mouse heart, uncovering cardiac enhancers throughout the genome. Many of the enhancers colocalized with ion channel genes repressed by TBX3, including the clustered sodium channel genes Scn5a, essential for cardiac function, and Scn10a. We identified 2 enhancers in the Scn5a/Scn10a locus, which were regulated by TBX3 and its family member and activator, TBX5, and are functionally conserved in humans. We also provided evidence that a SNP in the SCN10A enhancer associated with alterations in cardiac conduction patterns in humans disrupts TBX3/TBX5 binding and reduces the cardiac activity of the enhancer in vivo. Thus, the identification of key regulatory elements for cardiac conduction helps to explain how genetic variants in noncoding regulatory DNA sequences influence the regulation of cardiac conduction and the predisposition for cardiac arrhythmias.


Journal of Clinical Investigation | 2014

A common genetic variant within SCN10A modulates cardiac SCN5A expression

Malou van den Boogaard; Scott Smemo; Ozanna Burnicka-Turek; David E. Arnolds; Harmen J.G. van de Werken; Petra Klous; David M. McKean; Jochen D. Muehlschlegel; J. Moosmann; Okan Toka; Xinan Yang; Tamara T. Koopmann; Michiel E. Adriaens; Connie R. Bezzina; Wouter de Laat; Christine E. Seidman; Jonathan G. Seidman; Vincent M. Christoffels; Marcelo A. Nobrega; Phil Barnett; Ivan P. Moskowitz

Variants in SCN10A, which encodes a voltage-gated sodium channel, are associated with alterations of cardiac conduction parameters and the cardiac rhythm disorder Brugada syndrome; however, it is unclear how SCN10A variants promote dysfunctional cardiac conduction. Here we showed by high-resolution 4C-seq analysis of the Scn10a-Scn5a locus in murine heart tissue that a cardiac enhancer located in Scn10a, encompassing SCN10A functional variant rs6801957, interacts with the promoter of Scn5a, a sodium channel-encoding gene that is critical for cardiac conduction. We observed that SCN5A transcript levels were several orders of magnitude higher than SCN10A transcript levels in both adult human and mouse heart tissue. Analysis of BAC transgenic mouse strains harboring an engineered deletion of the enhancer within Scn10a revealed that the enhancer was essential for Scn5a expression in cardiac tissue. Furthermore, the common SCN10A variant rs6801957 modulated Scn5a expression in the heart. In humans, the SCN10A variant rs6801957, which correlated with slowed conduction, was associated with reduced SCN5A expression. These observations establish a genomic mechanism for how a common genetic variation at SCN10A influences cardiac physiology and predisposes to arrhythmia.


Cardiovascular Research | 2012

T-box transcription factor TBX3 reprogrammes mature cardiac myocytes into pacemaker-like cells

Martijn L. Bakker; Gerard J.J. Boink; Bas J. Boukens; Arie O. Verkerk; Malou van den Boogaard; A. Dénise den Haan; Willem M.H. Hoogaars; Henk P. J. Buermans; Jacques M.T. de Bakker; Jurgen Seppen; Hanno L. Tan; Antoon F. M. Moorman; Peter A. C. 't Hoen; Vincent M. Christoffels

AIM Treatment of disorders of the sinus node or the atrioventricular node requires insights into the molecular mechanisms of development and homoeostasis of these pacemaker tissues. In the developing heart, transcription factor TBX3 is required for pacemaker and conduction system development. Here, we explore the role of TBX3 in the adult heart and investigate whether TBX3 is able to reprogramme terminally differentiated working cardiomyocytes into pacemaker cells. METHODS AND RESULTS TBX3 expression was ectopically induced in cardiomyocytes of adult transgenic mice using tamoxifen. Expression analysis revealed an efficient switch from the working myocardial expression profile to that of the pacemaker myocardium. This included suppression of genes encoding gap junction subunits (Cx40, Cx43), the cardiac Na(+) channel (Na(V)1.5; I(Na)), and inwardly rectifying K(+) ion channels (K(ir) genes; I(K1)). Concordantly, we observed conduction slowing in these hearts and reductions in I(Na) and I(K1) in cardiomyocytes isolated from these hearts. The reduction in I(K1) resulted in a more depolarized maximum diastolic potential, thus enabling spontaneous diastolic depolarization. Neither ectopic pacemaker activity nor pacemaker current I(f) was observed. Lentiviral expression of TBX3 in ventricular cardiomyocytes resulted in conduction slowing and development of heterogeneous phenotypes, including depolarized and spontaneously active cardiomyocytes. CONCLUSIONS TBX3 reprogrammes terminally differentiated working cardiomyocytes and induces important pacemaker properties. The ability of TBX3 to reduce intercellular coupling to overcome current-to-load mismatch and the ability to reduce I(K1) density to enable diastolic depolarization are promising TBX3 characteristics that may facilitate biological pacemaker formation strategies.


Science Translational Medicine | 2016

Pitx2 modulates a Tbx5-dependent gene regulatory network to maintain atrial rhythm

Rangarajan D. Nadadur; Michael Broman; Bastiaan J. Boukens; Stefan Mazurek; Xinan Yang; Malou van den Boogaard; Jenna Bekeny; Margaret Gadek; Tarsha Ward; Min Zhang; Yun Qiao; James F. Martin; Christine E. Seidman; J. G. Seidman; Vincent M. Christoffels; Igor R. Efimov; Elizabeth M. McNally; Christopher R. Weber; Ivan P. Moskowitz

A mouse model reveals how seven atrial fibrillation–related risk genes form a network to control heartbeat. The genetic underpinnings of atrial fibrillation The irregular heartbeat of atrial fibrillation puts people in danger of stroke and heart disease; genomic studies have identified gene variants that increase the risk for this abnormality. Nadadur et al. now reveal how these genes influence the beat of the heart’s atrium. In a mouse model of atrial fibrillation, which lacks one of these genes, Tbx5, the authors describe a multitiered transcriptional network that links seven of these atrial fibrillation risk loci. Organized as an incoherent feed-forward loop, this network tightly controls expression of atrial rhythm genes, and its perturbation by the risk loci causes susceptibility to atrial fibrillation. Cardiac rhythm is extremely robust, generating 2 billion contraction cycles during the average human life span. Transcriptional control of cardiac rhythm is poorly understood. We found that removal of the transcription factor gene Tbx5 from the adult mouse caused primary spontaneous and sustained atrial fibrillation (AF). Atrial cardiomyocytes from the Tbx5-mutant mice exhibited action potential abnormalities, including spontaneous depolarizations, which were rescued by chelating free calcium. We identified a multitiered transcriptional network that linked seven previously defined AF risk loci: TBX5 directly activated PITX2, and TBX5 and PITX2 antagonistically regulated membrane effector genes Scn5a, Gja1, Ryr2, Dsp, and Atp2a2. In addition, reduced Tbx5 dose by adult-specific haploinsufficiency caused decreased target gene expression, myocardial automaticity, and AF inducibility, which were all rescued by Pitx2 haploinsufficiency in mice. These results defined a transcriptional architecture for atrial rhythm control organized as an incoherent feed-forward loop, driven by TBX5 and modulated by PITX2. TBX5/PITX2 interplay provides tight control of atrial rhythm effector gene expression, and perturbation of the co-regulated network caused AF susceptibility. This work provides a model for the molecular mechanisms underpinning the genetic implication of multiple AF genome-wide association studies loci and will contribute to future efforts to stratify patients for AF risk by genotype.


Circulation Research | 2014

A Large Permissive Regulatory Domain Exclusively Controls Tbx3 Expression in the Cardiac Conduction System

Jan Hendrik van Weerd; Ileana Badi; Malou van den Boogaard; Sonia Stefanovic; Harmen J.G. van de Werken; Melisa Gomez-Velazquez; Claudio Badia-Careaga; Miguel Manzanares; Wouter de Laat; Phil Barnett; Vincent M. Christoffels

Rationale: The evolutionary conserved Tbx3/Tbx5 gene cluster encodes T-box transcription factors that play crucial roles in the development and homeostasis of the cardiac conduction system in human and mouse. Both genes are expressed in overlapping patterns and function in strictly tissue-specific and dose-dependent manners, yet, their regulation is poorly understood. Objective: To analyze the mechanism underlying the complex regulation of the Tbx3/Tbx5 cluster. Methods and Results: By probing the 3-dimensional architecture of the Tbx3/Tbx5 cluster using high-resolution circular chromosome conformation capture sequencing in vivo, we found that its regulatory landscape is in a preformed conformation similar in embryonic heart, limbs, and brain. Tbx3 and its flanking gene desert form a 1 Mbp loop between CCCTC-binding factor (CTCF)-binding sites that is separated from the neighboring Tbx5 loop. However, Ctcf inactivation did not result in transcriptional regulatory interaction between Tbx3 and Tbx5. Multiple sites within the Tbx3 locus contact the promoter, including sites corresponding to regions known to contain variations in the human genome influencing conduction. We identified an atrioventricular-specific enhancer and a pan-cardiac enhancer that contact the promoter and each other and synergize to activate transcription in the atrioventricular conduction system. Conclusions: We provide a high-resolution model of the 3-dimensional structure and function of the Tbx3/Tbx5 locus and show that the locus is organized in a preformed, permissive structure. The Tbx3 locus forms a CTCF-independent autonomous regulatory domain with multiple combinatorial regulatory elements that control the precise pattern of Tbx3 in the cardiac conduction system.


Circulation-cardiovascular Genetics | 2014

Genetic Determinants of P Wave Duration and PR Segment

Niek Verweij; Irene Mateo Leach; Malou van den Boogaard; Dirk J. van Veldhuisen; Vincent M. Christoffels; Hans L. Hillege; Wiek H. van Gilst; Phil Barnett; Rudolf A. de Boer; Pim van der Harst

Background—The PR interval on the ECG reflects atrial depolarization and atrioventricular nodal delay which can be partially differentiated by P wave duration and PR segment, respectively. Genome-wide association studies have identified several genetic loci for PR interval, but it remains to be determined whether this is driven by P wave duration, PR segment, or both. Methods and Results—We replicated 7 of the 9 known PR interval loci in 16 468 individuals of European ancestry. Four loci were unambiguously associated with PR segment, while the others were shared for P wave duration and PR segment. Next, we performed a genome-wide analysis on P wave duration and PR segment separately and identified 5 novel loci. Single-nucleotide polymorphisms in KCND3 (P=8.3×10–11) and FADS2 (P=2.7×10–8) were associated with P wave duration, whereas single-nucleotide polymorphisms near IL17D (P=2.3×10–8), in EFHA1 (P=3.3×10−10), and in LRCH1 (P=2.1×10–8) were associated with PR segment. Analysis on DNA elements indicated that genome-wide significant single-nucleotide polymorphisms were enriched at genomic regions suggesting active gene transcription in the human right atrium. Quantitative polymerase chain reaction showed that genes were significantly higher expressed in the right atrium and atrioventricular node compared with left ventricle (P=5.6×10–6). Conclusions—Genetic associations of PR interval seem to be mainly driven by genetic determinants of the PR segment. Some of the PR interval associations are strengthened by a directional consistent effect of genetic determinants of P wave duration. Through genome-wide association we also identified genetic variants specifically associated with P wave duration which might be relevant for cardiac biology.


Current Topics in Developmental Biology | 2012

Localized and Temporal Gene Regulation in Heart Development

Phil Barnett; Malou van den Boogaard; Vincent M. Christoffels

The heart is a structurally complex and functionally heterogeneous organ. The repertoire of genes active in a given cardiac cell defines its shapes and function. This process of localized or heterogeneous gene expression is regulated to a large extent at the level of transcription, dictating the degree particular genes in a cell are active. Therefore, errors in the regulation of localized gene expression are at the basis of misregulation of the delicate process of heart development and function. In this review, we provide an overview of the origin of the different components of the vertebrate heart, and discuss our current understanding of the regulation of localized gene expression in the developing heart. We will also discuss where future research may lead to gain more insight into this process, which should provide much needed insight into the dysregulation of heart development and function, and the etiology of congenital defects.


Trends in Cardiovascular Medicine | 2014

From GWAS to function: Genetic variation in sodium channel gene enhancer influences electrical patterning

Malou van den Boogaard; Phil Barnett; Vincent M. Christoffels

The electrical activity of the heart depends on the correct interplay between key transcription factors and cis-regulatory elements, which together regulate the proper heterogeneous expression of genes encoding for ion channels and other proteins. Genome-wide association studies of ECG parameters implicated genetic variants in the genes for these factors and ion channels modulating conduction and depolarization. Here, we review recent insights into the regulation of localized expression of ion channel genes and the mechanism by which a single-nucleotide polymorphism (SNP) associated with alterations in cardiac conduction patterns in humans affects the transcriptional regulation of the sodium channel genes, SCN5A and SCN10A. The identification of regulatory elements of electrical activity genes helps to explain the impact of genetic variants in non-coding regulatory DNA sequences on regulation of cardiac conduction and the predisposition for cardiac arrhythmias.


PLOS ONE | 2014

OccuPeak: ChIP-Seq peak calling based on internal background modelling

Bouke A. de Boer; Karel van Duijvenboden; Malou van den Boogaard; Vincent M. Christoffels; Phil Barnett; Jan M. Ruijter

ChIP-seq has become a major tool for the genome-wide identification of transcription factor binding or histone modification sites. Most peak-calling algorithms require input control datasets to model the occurrence of background reads to account for local sequencing and GC bias. However, the GC-content of reads in Input-seq datasets deviates significantly from that in ChIP-seq datasets. Moreover, we observed that a commonly used peak calling program performed equally well when the use of a simulated uniform background set was compared to an Input-seq dataset. This contradicts the assumption that input control datasets are necessary to fatefully reflect the background read distribution. Because the GC-content of the abundant single reads in ChIP-seq datasets is similar to those of randomly sampled regions we designed a peak-calling algorithm with a background model based on overlapping single reads. The application, OccuPeak, uses the abundant low frequency tags present in each ChIP-seq dataset to model the background, thereby avoiding the need for additional datasets. Analysis of the performance of OccuPeak showed robust model parameters. Its measure of peak significance, the excess ratio, is only dependent on the tag density of a peak and the global noise levels. Compared to the commonly used peak-calling applications MACS and CisGenome, OccuPeak had the highest sensitivity in an enhancer identification benchmark test, and performed similar in an overlap tests of transcription factor occupation with DNase I hypersensitive sites and H3K27ac sites. Moreover, peaks called by OccuPeak were significantly enriched with cardiac disease-associated SNPs. OccuPeak runs as a standalone application and does not require extensive tweaking of parameters, making its use straightforward and user friendly. Availability: http://occupeak.hfrc.nl


Circulation | 2008

Abstract 5271: Transcription Factor Tbx3 Reprograms Adult Myocardial Cells into Nodal-like Cells

Martijn L. Bakker; Bastiaan J. Boukens; Malou van den Boogaard; Ruben Coronel; Antoon F. M. Moorman; Vincent M. Christoffels

Collaboration


Dive into the Malou van den Boogaard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phil Barnett

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter A. C. 't Hoen

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine E. Seidman

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge