Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malte Petersen is active.

Publication


Featured researches published by Malte Petersen.


BMC Evolutionary Biology | 2014

The evolutionary history of holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data

Ralph S. Peters; Karen Meusemann; Malte Petersen; Christoph Mayer; Jeanne Wilbrandt; Tanja Ziesmann; Alexander Donath; Karl M. Kjer; Ulrike Aspöck; Horst Aspöck; Andre J. Aberer; Alexandros Stamatakis; Frank Friedrich; Frank Hünefeld; Oliver Niehuis; Rolf G. Beutel; Bernhard Misof

BackgroundDespite considerable progress in systematics, a comprehensive scenario of the evolution of phenotypic characters in the mega-diverse Holometabola based on a solid phylogenetic hypothesis was still missing. We addressed this issue by de novo sequencing transcriptome libraries of representatives of all orders of holometabolan insects (13 species in total) and by using a previously published extensive morphological dataset. We tested competing phylogenetic hypotheses by analyzing various specifically designed sets of amino acid sequence data, using maximum likelihood (ML) based tree inference and Four-cluster Likelihood Mapping (FcLM). By maximum parsimony-based mapping of the morphological data on the phylogenetic relationships we traced evolutionary transformations at the phenotypic level and reconstructed the groundplan of Holometabola and of selected subgroups.ResultsIn our analysis of the amino acid sequence data of 1,343 single-copy orthologous genes, Hymenoptera are placed as sister group to all remaining holometabolan orders, i.e., to a clade Aparaglossata, comprising two monophyletic subunits Mecopterida (Amphiesmenoptera + Antliophora) and Neuropteroidea (Neuropterida + Coleopterida). The monophyly of Coleopterida (Coleoptera and Strepsiptera) remains ambiguous in the analyses of the transcriptome data, but appears likely based on the morphological data. Highly supported relationships within Neuropterida and Antliophora are Raphidioptera + (Neuroptera + monophyletic Megaloptera), and Diptera + (Siphonaptera + Mecoptera). ML tree inference and FcLM yielded largely congruent results. However, FcLM, which was applied here for the first time to large phylogenomic supermatrices, displayed additional signal in the datasets that was not identified in the ML trees.ConclusionsOur phylogenetic results imply that an orthognathous larva belongs to the groundplan of Holometabola, with compound eyes and well-developed thoracic legs, externally feeding on plants or fungi. Ancestral larvae of Aparaglossata were prognathous, equipped with single larval eyes (stemmata), and possibly agile and predacious. Ancestral holometabolan adults likely resembled in their morphology the groundplan of adult neopteran insects. Within Aparaglossata, the adult’s flight apparatus and ovipositor underwent strong modifications. We show that the combination of well-resolved phylogenies obtained by phylogenomic analyses and well-documented extensive morphological datasets is an appropriate basis for reconstructing complex morphological transformations and for the inference of evolutionary histories.


Current Biology | 2012

Genomic and Morphological Evidence Converge to Resolve the Enigma of Strepsiptera

Oliver Niehuis; Gerrit Hartig; Sonja Grath; Hans Pohl; Jörg Lehmann; Hakim Tafer; Alexander Donath; Veiko Krauss; Carina Eisenhardt; Jana Hertel; Malte Petersen; Christoph Mayer; Karen Meusemann; Ralph S. Peters; Peter F. Stadler; Rolf G. Beutel; Erich Bornberg-Bauer; Duane D. McKenna; Bernhard Misof

The phylogeny of insects, one of the most spectacular radiations of life on earth, has received considerable attention. However, the evolutionary roots of one intriguing group of insects, the twisted-wing parasites (Strepsiptera), remain unclear despite centuries of study and debate. Strepsiptera exhibit exceptional larval developmental features, consistent with a predicted step from direct (hemimetabolous) larval development to complete metamorphosis that could have set the stage for the spectacular radiation of metamorphic (holometabolous) insects. Here we report the sequencing of a Strepsiptera genome and show that the analysis of sequence-based genomic data (comprising more than 18 million nucleotides from nearly 4,500 genes obtained from a total of 13 insect genomes), along with genomic metacharacters, clarifies the phylogenetic origin of Strepsiptera and sheds light on the evolution of holometabolous insect development. Our results provide overwhelming support for Strepsiptera as the closest living relatives of beetles (Coleoptera). They demonstrate that the larval developmental features of Strepsiptera, reminiscent of those of hemimetabolous insects, are the result of convergence. Our analyses solve the long-standing enigma of the evolutionary roots of Strepsiptera and reveal that the holometabolous mode of insect development is more malleable than previously thought.


Molecular Biology and Evolution | 2014

Decisive Data Sets in Phylogenomics: Lessons from Studies on the Phylogenetic Relationships of Primarily Wingless Insects

Emiliano Dell’Ampio; Karen Meusemann; Nikolaus U. Szucsich; Ralph S. Peters; Benjamin Meyer; Janus Borner; Malte Petersen; Andre J. Aberer; Alexandros Stamatakis; Manfred Walzl; Bui Quang Minh; Arndt von Haeseler; Ingo Ebersberger; Günther Pass; Bernhard Misof

Phylogenetic relationships of the primarily wingless insects are still considered unresolved. Even the most comprehensive phylogenomic studies that addressed this question did not yield congruent results. To get a grip on these problems, we here analyzed the sources of incongruence in these phylogenomic studies by using an extended transcriptome data set. Our analyses showed that unevenly distributed missing data can be severely misleading by inflating node support despite the absence of phylogenetic signal. In consequence, only decisive data sets should be used which exclusively comprise data blocks containing all taxa whose relationships are addressed. Additionally, we used Four-cluster Likelihood Mapping (FcLM) to measure the degree of congruence among genes of a data set, as a measure of support alternative to bootstrap. FcLM showed incongruent signal among genes, which in our case is correlated neither with functional class assignment of these genes nor with model misspecification due to unpartitioned analyses. The herein analyzed data set is the currently largest data set covering primarily wingless insects, but failed to elucidate their interordinal phylogenetic relationships. Although this is unsatisfying from a phylogenetic perspective, we try to show that the analyses of structure and signal within phylogenomic data can protect us from biased phylogenetic inferences due to analytical artifacts.


BMC Bioinformatics | 2017

Orthograph: a versatile tool for mapping coding nucleotide sequences to clusters of orthologous genes

Malte Petersen; Karen Meusemann; Alexander Donath; Daniel Dowling; Shanlin Liu; Ralph S. Peters; Lars Podsiadlowski; Alexandros Vasilikopoulos; Xin Zhou; Bernhard Misof; Oliver Niehuis

BackgroundOrthology characterizes genes of different organisms that arose from a single ancestral gene via speciation, in contrast to paralogy, which is assigned to genes that arose via gene duplication. An accurate orthology assignment is a crucial step for comparative genomic studies. Orthologous genes in two organisms can be identified by applying a so-called reciprocal search strategy, given that complete information of the organisms’ gene repertoire is available. In many investigations, however, only a fraction of the gene content of the organisms under study is examined (e.g., RNA sequencing). Here, identification of orthologous nucleotide or amino acid sequences can be achieved using a graph-based approach that maps nucleotide sequences to genes of known orthology. Existing implementations of this approach, however, suffer from algorithmic issues that may cause problems in downstream analyses.ResultsWe present a new software pipeline, Orthograph, that addresses and solves the above problems and implements useful features for a wide range of comparative genomic and transcriptomic analyses. Orthograph applies a best reciprocal hit search strategy using profile hidden Markov models and maps nucleotide sequences to the globally best matching cluster of orthologous genes, thus enabling researchers to conveniently and reliably delineate orthologs and paralogs from transcriptomic and genomic sequence data. We demonstrate the performance of our approach on de novo-sequenced and assembled transcript libraries of 24 species of apoid wasps (Hymenoptera: Aculeata) as well as on published genomic datasets.ConclusionWith Orthograph, we implemented a best reciprocal hit approach to reference-based orthology prediction for coding nucleotide sequences such as RNAseq data. Orthograph is flexible, easy to use, open source and freely available at https://mptrsen.github.io/Orthograph. Additionally, we release 24 de novo-sequenced and assembled transcript libraries of apoid wasp species.


Genome Biology and Evolution | 2017

Phylogenetic Origin and Diversification of RNAi Pathway Genes in Insects

Daniel Dowling; Thomas Pauli; Alexander Donath; Karen Meusemann; Lars Podsiadlowski; Malte Petersen; Ralph S. Peters; Christoph Mayer; Shanlin Liu; Xin Zhou; Bernhard Misof; Oliver Niehuis

Abstract RNA interference (RNAi) refers to the set of molecular processes found in eukaryotic organisms in which small RNA molecules mediate the silencing or down-regulation of target genes. In insects, RNAi serves a number of functions, including regulation of endogenous genes, anti-viral defense, and defense against transposable elements. Despite being well studied in model organisms, such as Drosophila, the distribution of core RNAi pathway genes and their evolution in insects is not well understood. Here we present the most comprehensive overview of the distribution and diversity of core RNAi pathway genes across 100 insect species, encompassing all currently recognized insect orders. We inferred the phylogenetic origin of insect-specific RNAi pathway genes and also identified several hitherto unrecorded gene expansions using whole-body transcriptome data from the international 1KITE (1000 Insect Transcriptome Evolution) project as well as other resources such as i5K (5000 Insect Genome Project). Specifically, we traced the origin of the double stranded RNA binding protein R2D2 to the last common ancestor of winged insects (Pterygota), the loss of Sid-1/Tag-130 orthologs in Antliophora (fleas, flies and relatives, and scorpionflies in a broad sense), and confirm previous evidence for the splitting of the Argonaute proteins Aubergine and Piwi in Brachyceran flies (Diptera, Brachycera). Our study offers new reference points for future experimental research on RNAi-related pathway genes in insects.


Genome Biology and Evolution | 2016

Decay of sexual trait genes in an asexual parasitoid wasp

Ken Kraaijeveld; Yahya Anvar; Jeroen Frank; Arnoud Schmitz; Jens Bast; Jeanne Wilbrandt; Malte Petersen; Tanja Ziesmann; Oliver Niehuis; Peter de Knijff; Johan T. den Dunnen; Jacintha Ellers

Trait loss is a widespread phenomenon with pervasive consequences for a species’ evolutionary potential. The genetic changes underlying trait loss have only been clarified in a small number of cases. None of these studies can identify whether the loss of the trait under study was a result of neutral mutation accumulation or negative selection. This distinction is relatively clear-cut in the loss of sexual traits in asexual organisms. Male-specific sexual traits are not expressed and can only decay through neutral mutations, whereas female-specific traits are expressed and subject to negative selection. We present the genome of an asexual parasitoid wasp and compare it to that of a sexual lineage of the same species. We identify a short-list of 16 genes for which the asexual lineage carries deleterious SNP or indel variants, whereas the sexual lineage does not. Using tissue-specific expression data from other insects, we show that fifteen of these are expressed in male-specific reproductive tissues. Only one deleterious variant was found that is expressed in the female-specific spermathecae, a trait that is heavily degraded and thought to be under negative selection in L. clavipes. Although the phenotypic decay of male-specific sexual traits in asexuals is generally slow compared with the decay of female-specific sexual traits, we show that male-specific traits do indeed accumulate deleterious mutations as expected by theory. Our results provide an excellent starting point for detailed study of the genomics of neutral and selected trait decay.


BMC Genomics | 2016

Transcriptomic data from panarthropods shed new light on the evolution of insulator binding proteins in insects

Thomas Pauli; Lucia Vedder; Daniel Dowling; Malte Petersen; Karen Meusemann; Alexander Donath; Ralph S. Peters; Lars Podsiadlowski; Christoph Mayer; Shanlin Liu; Xin Zhou; Peter Heger; Thomas Wiehe; Lars Hering; Georg Mayer; Bernhard Misof; Oliver Niehuis

BackgroundBody plan development in multi-cellular organisms is largely determined by homeotic genes. Expression of homeotic genes, in turn, is partially regulated by insulator binding proteins (IBPs). While only a few enhancer blocking IBPs have been identified in vertebrates, the common fruit fly Drosophila melanogaster harbors at least twelve different enhancer blocking IBPs. We screened recently compiled insect transcriptomes from the 1KITE project and genomic and transcriptomic data from public databases, aiming to trace the origin of IBPs in insects and other arthropods.ResultsOur study shows that the last common ancestor of insects (Hexapoda) already possessed a substantial number of IBPs. Specifically, of the known twelve insect IBPs, at least three (i.e., CP190, Su(Hw), and CTCF) already existed prior to the evolution of insects. Furthermore we found GAF orthologs in early branching insect orders, including Zygentoma (silverfish and firebrats) and Diplura (two-pronged bristletails). Mod(mdg4) is most likely a derived feature of Neoptera, while Pita is likely an evolutionary novelty of holometabolous insects. Zw5 appears to be restricted to schizophoran flies, whereas BEAF-32, ZIPIC and the Elba complex, are probably unique to the genus Drosophila. Selection models indicate that insect IBPs evolved under neutral or purifying selection.ConclusionsOur results suggest that a substantial number of IBPs either pre-date the evolution of insects or evolved early during insect evolution. This suggests an evolutionary history of insulator binding proteins in insects different to that previously thought. Moreover, our study demonstrates the versatility of the 1KITE transcriptomic data for comparative analyses in insects and other arthropods.


Molecular Phylogenetics and Evolution | 2018

Anchored phylogenomics unravels the evolution of spider flies (Diptera, Acroceridae) and reveals discordance between nucleotides and amino acids

Jessica P. Gillung; Shaun L. Winterton; Keith M. Bayless; Ziad Khouri; Marek L. Borowiec; David K. Yeates; Lynn S. Kimsey; Bernhard Misof; Seunggwan Shin; Xin Zhou; Christoph Mayer; Malte Petersen; Brian M. Wiegmann

The onset of phylogenomics has contributed to the resolution of numerous challenging evolutionary questions while offering new perspectives regarding biodiversity. However, in some instances, analyses of large genomic datasets can also result in conflicting estimates of phylogeny. Here, we present the first phylogenomic scale study of a dipteran parasitoid family, built upon anchored hybrid enrichment and transcriptomic data of 240 loci of 43 ingroup acrocerid taxa. A new hypothesis for the timing of spider fly evolution is proposed, wielding recent advances in divergence time dating, including the fossilized birth-death process to show that the origin of Acroceridae is younger than previously proposed. To test the robustness of our phylogenetic inferences, we analyzed our datasets using different phylogenetic estimation criteria, including supermatrix and coalescent-based approaches, maximum-likelihood and Bayesian methods, combined with other approaches such as permutations of the data, homogeneous versus heterogeneous models, and alternative data and taxon sets. Resulting topologies based on amino acids and nucleotides are both strongly supported but critically discordant, primarily in terms of the monophyly of Panopinae. Conflict was not resolved by controlling for compositional heterogeneity and saturation in third codon positions, which highlights the need for a better understanding of how different biases affect different data sources. In our study, results based on nucleotides were both more robust to alterations of the data and different analytical methods and more compatible with our current understanding of acrocerid morphology and patterns of host usage.


Current Biology | 2017

Evolutionary History of the Hymenoptera

Ralph S. Peters; Lars Krogmann; Christoph Mayer; Alexander Donath; Simon Gunkel; Karen Meusemann; Alexey Kozlov; Lars Podsiadlowski; Malte Petersen; Robert Lanfear; Patricia Diez; Karl M. Kjer; Seraina Klopfstein; Rudolf Meier; Carlo Polidori; Thomas Schmitt; Shanlin Liu; Xin Zhou; Torsten Wappler; Jes Rust; Bernhard Misof; Oliver Niehuis


Molecular Biology and Evolution | 2016

BaitFisher: A Software Package for Multispecies Target DNA Enrichment Probe Design

Christoph Mayer; Manuela Sann; Alexander Donath; Martin Meixner; Lars Podsiadlowski; Ralph S. Peters; Malte Petersen; Karen Meusemann; Karsten Liere; Johann-Wolfgang Wägele; Bernhard Misof; Christoph Bleidorn; Michael Ohl; Oliver Niehuis

Collaboration


Dive into the Malte Petersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Zhou

China Agricultural University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexandros Stamatakis

Karlsruhe Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge