Malte Tiburcy
University of Göttingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malte Tiburcy.
Circulation Research | 2011
Izhak Kehat; Jennifer Davis; Malte Tiburcy; Federica Accornero; Marc K. Saba-El-Leil; Marjorie Maillet; Allen J. York; John N. Lorenz; Wolfram H. Zimmermann; Sylvain Meloche; Jeffery D. Molkentin
Rationale: An increase in cardiac afterload typically produces concentric hypertrophy characterized by an increase in cardiomyocyte width, whereas volume overload or exercise results in eccentric growth characterized by cellular elongation and addition of sarcomeres in series. The signaling pathways that control eccentric versus concentric heart growth are not well understood. Objective: To determine the role of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in regulating the cardiac hypertrophic response. Methods and Results: Here, we used mice lacking all ERK1/2 protein in the heart (Erk1−/− Erk2fl/fl-Cre) and mice expressing activated mitogen-activated protein kinase kinase (Mek)1 in the heart to induce ERK1/2 signaling, as well as mechanistic experiments in cultured myocytes to assess cellular growth characteristics associated with this signaling pathway. Although genetic deletion of all ERK1/2 from the mouse heart did not block the cardiac hypertrophic response per se, meaning that the heart still increased in weight with both aging and pathological stress stimulation, it did dramatically alter how the heart grew. For example, adult myocytes from hearts of Erk1−/− Erk2fl/fl-Cre mice showed preferential eccentric growth (lengthening), whereas myocytes from Mek1 transgenic hearts showed concentric growth (width increase). Isolated adult myocytes acutely inhibited for ERK1/2 signaling by adenoviral gene transfer showed spontaneous lengthening, whereas infection with an activated Mek1 adenovirus promoted constitutive ERK1/2 signaling and increased myocyte thickness. A similar effect was observed in engineered heart tissue under cyclic stretching, where ERK1/2 inhibition led to preferential lengthening. Conclusions: Taken together, these data demonstrate that the ERK1/2 signaling pathway uniquely regulates the balance between eccentric and concentric growth of the heart.Rationale An increase in cardiac afterload typically produces concentric hypertrophy characterized by an increase in cardiomyocyte width, while volume overload or exercise results in eccentric growth characterized by cellular elongation and addition of sarcomeres in series. The signaling pathways that control eccentric versus concentric heart growth are not well understood.
Circulation Research | 2011
Izhak Kehat; Jennifer Davis; Malte Tiburcy; Federica Accornero; Marc K. Saba-El-Leil; Marjorie Maillet; Allen J. York; John N. Lorenz; Wolfram H. Zimmermann; Sylvain Meloche; Jeffery D. Molkentin
Rationale: An increase in cardiac afterload typically produces concentric hypertrophy characterized by an increase in cardiomyocyte width, whereas volume overload or exercise results in eccentric growth characterized by cellular elongation and addition of sarcomeres in series. The signaling pathways that control eccentric versus concentric heart growth are not well understood. Objective: To determine the role of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in regulating the cardiac hypertrophic response. Methods and Results: Here, we used mice lacking all ERK1/2 protein in the heart (Erk1−/− Erk2fl/fl-Cre) and mice expressing activated mitogen-activated protein kinase kinase (Mek)1 in the heart to induce ERK1/2 signaling, as well as mechanistic experiments in cultured myocytes to assess cellular growth characteristics associated with this signaling pathway. Although genetic deletion of all ERK1/2 from the mouse heart did not block the cardiac hypertrophic response per se, meaning that the heart still increased in weight with both aging and pathological stress stimulation, it did dramatically alter how the heart grew. For example, adult myocytes from hearts of Erk1−/− Erk2fl/fl-Cre mice showed preferential eccentric growth (lengthening), whereas myocytes from Mek1 transgenic hearts showed concentric growth (width increase). Isolated adult myocytes acutely inhibited for ERK1/2 signaling by adenoviral gene transfer showed spontaneous lengthening, whereas infection with an activated Mek1 adenovirus promoted constitutive ERK1/2 signaling and increased myocyte thickness. A similar effect was observed in engineered heart tissue under cyclic stretching, where ERK1/2 inhibition led to preferential lengthening. Conclusions: Taken together, these data demonstrate that the ERK1/2 signaling pathway uniquely regulates the balance between eccentric and concentric growth of the heart.Rationale An increase in cardiac afterload typically produces concentric hypertrophy characterized by an increase in cardiomyocyte width, while volume overload or exercise results in eccentric growth characterized by cellular elongation and addition of sarcomeres in series. The signaling pathways that control eccentric versus concentric heart growth are not well understood.
Circulation Research | 2011
Malte Tiburcy; Michael Didié; Oliver Boy; Peter Christalla; Stephan Döker; Hiroshi Naito; Bijoy Chandapillai Karikkineth; Ali El-Armouche; Michael Grimm; Monika Nose; Thomas Eschenhagen; Anke Zieseniss; Doerthe M. Katschinski; Nazha Hamdani; Wolfgang A. Linke; Xiaoke Yin; Manuel Mayr; Wolfram-Hubertus Zimmermann
Rationale: Cardiac tissue engineering should provide “realistic” in vitro heart muscle models and surrogate tissue for myocardial repair. For either application, engineered myocardium should display features of native myocardium, including terminal differentiation, organotypic maturation, and hypertrophic growth. Objective: To test the hypothesis that 3D-engineered heart tissue (EHT) culture supports (1) terminal differentiation as well as (2) organotypic assembly and maturation of immature cardiomyocytes, and (3) constitutes a methodological platform to investigate mechanisms underlying hypertrophic growth. Methods and Results: We generated EHTs from neonatal rat cardiomyocytes and compared morphological and molecular properties of EHT and native myocardium from fetal, neonatal, and adult rats. We made the following key observations: cardiomyocytes in EHT (1) gained a high level of binucleation in the absence of notable cytokinesis, (2) regained a rod-shape and anisotropic sarcomere organization, (3) demonstrated a fetal-to-adult gene expression pattern, and (4) responded to distinct hypertrophic stimuli with concentric or eccentric hypertrophy and reexpression of fetal genes. The process of terminal differentiation and maturation (culture days 7–12) was preceded by a tissue consolidation phase (culture days 0–7) with substantial cardiomyocyte apoptosis and dynamic extracellular matrix restructuring. Conclusions: This study documents the propensity of immature cardiomyocytes to terminally differentiate and mature in EHT in a remarkably organotypic manner. It moreover provides the rationale for the utility of the EHT technology as a methodological bridge between 2D cell culture and animal models.
European Heart Journal | 2013
Katrin Streckfuss-Bömeke; Frieder Wolf; Azadeh Azizian; Michael Stauske; Malte Tiburcy; Stefan Wagner; Daniela Hübscher; Ralf Dressel; Simin Chen; Jörg Jende; Gerald Wulf; Verena N. Lorenz; Michael P. Schön; Lars S. Maier; Wolfram H. Zimmermann; Gerd Hasenfuss; Kaomei Guan
AIMS Induced pluripotent stem cells (iPSCs) provide a unique opportunity for the generation of patient-specific cells for use in disease modelling, drug screening, and regenerative medicine. The aim of this study was to compare human-induced pluripotent stem cells (hiPSCs) derived from different somatic cell sources regarding their generation efficiency and cardiac differentiation potential, and functionalities of cardiomyocytes. METHODS AND RESULTS We generated hiPSCs from hair keratinocytes, bone marrow mesenchymal stem cells (MSCs), and skin fibroblasts by using two different virus systems. We show that MSCs and fibroblasts are more easily reprogrammed than keratinocytes. This corresponds to higher methylation levels of minimal promoter regions of the OCT4 and NANOG genes in keratinocytes than in MSCs and fibroblasts. The success rate and reprogramming efficiency was significantly higher by using the STEMCCA system than the OSNL system. All analysed hiPSCs are pluripotent and show phenotypical characteristics similar to human embryonic stem cells. We studied the cardiac differentiation efficiency of generated hiPSC lines (n = 24) and found that MSC-derived hiPSCs exhibited a significantly higher efficiency to spontaneously differentiate into beating cardiomyocytes when compared with keratinocyte-, and fibroblast-derived hiPSCs. There was no significant difference in the functionalities of the cardiomyocytes derived from hiPSCs with different origins, showing the presence of pacemaker-, atrial-, ventricular- and Purkinje-like cardiomyocytes, and exhibiting rhythmic Ca2+ transients and Ca2+ sparks in hiPSC-derived cardiomyocytes. Furthermore, spontaneously and synchronously beating and force-developing engineered heart tissues were generated. CONCLUSIONS Human-induced pluripotent stem cells can be reprogrammed from all three somatic cell types, but with different efficiency. All analysed iPSCs can differentiate into cardiomyocytes, and the functionalities of cardiomyocytes derived from different cell origins are similar. However, MSC-derived hiPSCs revealed a higher cardiac differentiation efficiency than keratinocyte- and fibroblast-derived hiPSCs.
Circulation Research | 2015
Johannes Riegler; Malte Tiburcy; Antje D. Ebert; Evangeline Tzatzalos; Uwe Raaz; Oscar J. Abilez; Qi Shen; Nigel G. Kooreman; Evgenios Neofytou; Vincent C. Chen; Mouer Wang; Tim Meyer; Philip S. Tsao; Andrew J. Connolly; Larry A. Couture; Joseph D. Gold; Wolfram H. Zimmermann; Joseph C. Wu
RATIONALE Tissue engineering approaches may improve survival and functional benefits from human embryonic stem cell-derived cardiomyocyte transplantation, thereby potentially preventing dilative remodeling and progression to heart failure. OBJECTIVE Assessment of transport stability, long-term survival, structural organization, functional benefits, and teratoma risk of engineered heart muscle (EHM) in a chronic myocardial infarction model. METHODS AND RESULTS We constructed EHMs from human embryonic stem cell-derived cardiomyocytes and released them for transatlantic shipping following predefined quality control criteria. Two days of shipment did not lead to adverse effects on cell viability or contractile performance of EHMs (n=3, P=0.83, P=0.87). One month after ischemia/reperfusion injury, EHMs were implanted onto immunocompromised rat hearts to simulate chronic ischemia. Bioluminescence imaging showed stable engraftment with no significant cell loss between week 2 and 12 (n=6, P=0.67), preserving ≤25% of the transplanted cells. Despite high engraftment rates and attenuated disease progression (change in ejection fraction for EHMs, -6.7±1.4% versus control, -10.9±1.5%; n>12; P=0.05), we observed no difference between EHMs containing viable and nonviable human cardiomyocytes in this chronic xenotransplantation model (n>12; P=0.41). Grafted cardiomyocytes showed enhanced sarcomere alignment and increased connexin 43 expression at 220 days after transplantation. No teratomas or tumors were found in any of the animals (n=14) used for long-term monitoring. CONCLUSIONS EHM transplantation led to high engraftment rates, long-term survival, and progressive maturation of human cardiomyocytes. However, cell engraftment was not correlated with functional improvements in this chronic myocardial infarction model. Most importantly, the safety of this approach was demonstrated by the lack of tumor or teratoma formation.
Circulation | 2017
Malte Tiburcy; James E. Hudson; Paul Balfanz; Susanne Schlick; Tim De Meyer; Mei-Ling Chang Liao; Elif Levent; Farah S. Raad; Sebastian Zeidler; Edgar Wingender; Johannes Riegler; Mouer Wang; Joseph D. Gold; Izhak Kehat; Erich Wettwer; Ursula Ravens; Pieterjan Dierickx; Linda W. van Laake; Marie-José Goumans; Sara Khadjeh; Karl Toischer; Gerd Hasenfuss; Larry A. Couture; Andreas Unger; Wolfgang A. Linke; Toshiyuki Araki; Benjamin G. Neel; Gordon Keller; Lior Gepstein; Joseph C. Wu
Background: Advancing structural and functional maturation of stem cell–derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. Methods: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell–derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. Results: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to &bgr;-adrenergic stimulation mediated via canonical &bgr;1- and &bgr;2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. Conclusions: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell–derived cardiomyocytes under defined, serum-free conditions.
Stem cell reports | 2014
Alberto Izarra; Isabel Moscoso; Elif Levent; Susana Cañón; Inmaculada Cerrada; Antonio Díez-Juan; Vanessa Blanca; Iván-J. Núñez-Gil; Iñigo Valiente; Amparo Ruiz-Sauri; Pilar Sepúlveda; Malte Tiburcy; Wh Zimmermann; Antonio Bernad
Summary miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue.
Current protocols in pharmacology | 2012
Poh Loong Soong; Malte Tiburcy; Wolfram-Hubertus Zimmermann
The advent of pluripotent human embryonic stem cells has created the unique opportunity for the development of a wide variety of humanized cellular tools for basic research, as well as industrial and clinical applications. It has, however, become apparent that embryonic stem cell derivatives in classical monolayer or embryoid body culture do not resemble bona fide tissues, mainly because of their limited organotypic organization and maturation in these culture formats. This shortcoming may be addressed by tissue engineering technologies aiming at the provision of a “natural” growth environment to facilitate organotypic tissue assembly. In this unit, we provide two harmonized basic protocols for (1) cardiac differentiation of human embryonic stem cells under serum‐free conditions and (2) the assembly of the stem cell–derived cardiomyocytes into engineered heart muscle. This protocol can be easily adapted to bioengineer heart muscle also from other stem cell–derived cardiomyocytes, including cardiomyocytes from human‐induced pluripotent stem cells. Curr. Protoc. Cell Biol. 55:23.8.1‐23.8.21.
Journal of Molecular and Cellular Cardiology | 2010
Marius Vantler; Bijoy Chandapillai Karikkineth; Hiroshi Naito; Malte Tiburcy; Michael Didié; Monika Nose; Stephan Rosenkranz; Wh Zimmermann
Platelet-derived-growth-factor-BB (PDGF-BB) can protect various cell types from apoptotic cell death, and induce hypertrophic growth and proliferation, but little is known about its direct or indirect effects on cardiomyocytes. Cardiac muscle engineering is compromised by a particularly high rate of cardiomyocyte death. Here we hypothesized that PDGF-BB stimulation can (1) protect cardiomyocytes from apoptosis, (2) enhance myocyte content in and (3) consequently optimize contractile performance of engineered heart tissue (EHT). We investigated the effects of PDGF-receptor activation in neonatal rat heart monolayer- and EHT-cultures by isometric contraction experiments, cytomorphometry, (3)H-thymidine and (3)H-phenylalanine incorporation assays, quantitative PCR (calsequestrin 2, alpha-cardiac and skeletal actin, atrial natriuretic factor, alpha- and beta-myosin heavy chain), immunoblotting (activated caspase 3, Akt-phosphorylation), and ELISA (cell death detection). PDGF-BB did not induce hypertrophy or proliferation in cardiomyocytes, but enhanced contractile performance of EHT. This effect was concentration-dependent (E(max) 10 ng/ml) and maximal only after transient PDGF-BB stimulation (culture days 0-7; total culture duration: 12 days). Improvement of contractile function was associated with higher cardiomyocyte content, as a consequence of PDGF-BB mediated protection from apoptosis (lower caspase-3 activity particularly in cardiomyocytes in PDGF-BB treated vs. untreated EHTs). We confirmed the anti-apoptotic effect of PDGF-BB in monolayer cultures and observed that PI3-kinase inhibition with LY294002 attenuated PDGF-BB-mediated cardiomyocyte protection. We conclude that PDGF-BB does not induce hypertrophy or proliferation, but confers an anti-apoptotic effect on cardiomyocytes. Our findings suggest a further exploitation of PDGF-BB in cardiomyocyte protection in vivo and in vitro.
Pflügers Archiv: European Journal of Physiology | 2015
Melanie Vogler; Anke Zieseniss; Amke R. Hesse; Elif Levent; Malte Tiburcy; Eva Heinze; Nicolai Burzlaff; Gunnar Schley; Kai-Uwe Eckardt; Carsten Willam; Dörthe M. Katschinski
Several genetically modified mouse models implicated that prolyl-4-hydroxylase domain (PHD) enzymes are critical mediators for protecting tissues from an ischemic insult including myocardial infarction by affecting the stability and activation of hypoxia-inducible factor (HIF)-1 and HIF-2. Thus, the current efforts to develop small-molecule PHD inhibitors open a new therapeutic option for myocardial tissue protection during ischemia. Therefore, we aimed to investigate the applicability and efficacy of pharmacological HIFα stabilization by a small-molecule PHD inhibitor in the heart. We tested for protective effects in the acute phase of myocardial infarction after pre- or post-conditional application of the inhibitor. Application of the specific PHD inhibitor 2-(1-chloro-4-hydroxyisoquinoline-3-carboxamido) acetate (ICA) resulted in HIF-1α and HIF-2α accumulation in heart muscle cells in vitro and in vivo. The rapid and robust responsiveness of cardiac tissue towards ICA was further confirmed by induction of the known HIF target genes heme oxygenase-1 and PHD3. Pre- and post-conditional treatment of mice undergoing myocardial infarction resulted in a significantly smaller infarct size. Tissue protection from ischemia after pre- or post-conditional ICA treatment demonstrates that there is a therapeutic time window for the application of the PHD inhibitor (PHI) post-myocardial infarction, which might be exploited for acute medical interventions.