Mamadou Daffé
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mamadou Daffé.
Advances in Microbial Physiology | 1997
Mamadou Daffé; Philip Draper
The review discusses current knowledge of the biosynthesis, composition and arrangement of the mycobacterial envelope, describes the biological activities of the constituents and considers how these activities may be relevant to the pathology of mycobacterial disease. The envelope possesses three structural components: plasma membrane, wall and capsule. Although the major biomolecules occurring in each of these parts are known, the distribution of numerous minor substances is poorly understood; an attempt has been made to assign them to particular positions on rational grounds. The plasma membrane appears to be a typical bacterial membrane but, though vital to the mycobacterium, probably plays little part in pathological processes. The wall partly resembles a Gram-positive wall, but is unusual in having a layer of lipid (mycolate esters) which is probably arranged to form a permeability barrier to polar molecules. The capsule, whose chemical composition has only recently been recognized, consists of polysaccharide and protein with traces of lipid; the arrangement of these components is imperfectly understood. Constituents of all parts of the envelope have biological activities which may be relevant. The likely importance of these activities in the overall effect of the envelope is considered.
PLOS Pathogens | 2008
Pascale Peyron; Julien Vaubourgeix; Yannick Poquet; Florence Levillain; Catherine Botanch; Fabienne Bardou; Mamadou Daffé; Jean-François Emile; Bruno Marchou; Pere-Joan Cardona; Chantal de Chastellier
Tuberculosis (TB) is characterized by a tight interplay between Mycobacterium tuberculosis and host cells within granulomas. These cellular aggregates restrict bacterial spreading, but do not kill all the bacilli, which can persist for years. In-depth investigation of M. tuberculosis interactions with granuloma-specific cell populations are needed to gain insight into mycobacterial persistence, and to better understand the physiopathology of the disease. We have analyzed the formation of foamy macrophages (FMs), a granuloma-specific cell population characterized by its high lipid content, and studied their interaction with the tubercle bacillus. Within our in vitro human granuloma model, M. tuberculosis long chain fatty acids, namely oxygenated mycolic acids (MA), triggered the differentiation of human monocyte-derived macrophages into FMs. In these cells, mycobacteria no longer replicated and switched to a dormant non-replicative state. Electron microscopy observation of M. tuberculosis–infected FMs showed that the mycobacteria-containing phagosomes migrate towards host cell lipid bodies (LB), a process which culminates with the engulfment of the bacillus into the lipid droplets and with the accumulation of lipids within the microbe. Altogether, our results suggest that oxygenated mycolic acids from M. tuberculosis play a crucial role in the differentiation of macrophages into FMs. These cells might constitute a reservoir used by the tubercle bacillus for long-term persistence within its human host, and could provide a relevant model for the screening of new antimicrobials against non-replicating persistent mycobacteria.
Journal of Bacteriology | 2008
Benoît Zuber; Mohamed Chami; Christine Houssin; Jacques Dubochet; Gareth Griffiths; Mamadou Daffé
The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function.
Molecular Microbiology | 2006
Shaun Walters; Eugenie Dubnau; Irina Kolesnikova; Françoise Laval; Mamadou Daffé; Issar Smith
Two‐component signal transduction systems (2‐CS) play an important role in bacterial pathogenesis. In the work presented here, we have studied the effects of a mutation in the Mycobacterium tuberculosis (Mtb) PhoPR 2‐CS on the pathogenicity, physiology and global gene expression of this bacterial pathogen. Disruption of PhoPR causes a marked attenuation of growth in macrophages and mice and prevents growth in low‐Mg2+ media. The inability to grow in THP‐1 macrophages can be partially overcome by the addition of excess Mg2+ during infection. Global transcription assays demonstrate PhoP is a positive transcriptional regulator of several genes, but do not support the hypothesis that the Mtb PhoPR system is sensing Mg2+ starvation, as is the case with the Salmonella typhimurium PhoPQ 2‐CS. The genes that were positively regulated include those found in the pks2 and the msl3 gene clusters that encode enzymes for the biosynthesis of sulphatides and diacyltrehalose and polyacyltrehalose respectively. Complementary biochemical studies, in agreement with recent results from another group, indicate that these complex lipids are also absent from the phoP mutant, and the lack of these components in its cell envelope may indirectly cause the mutants high‐Mg2+ growth requirement. The experiments reported here provide functional evidence for the PhoPR 2‐CS involvement in Mtb pathogenesis, and they suggest that a major reason for the attenuation observed in the phoP mutant is the absence of certain complex lipids that are known to be important for virulence.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Damien Portevin; Célia de Sousa-d'Auria; Christine Houssin; Christine Grimaldi; Mohamed Chami; Mamadou Daffé; Christophe Guilhot
Mycolic acids are major and specific constituents of the cell envelope of Corynebacterineae, a suborder of bacterial species including several important human pathogens such as Mycobacterium tuberculosis, Mycobacterium leprae, or Corynebacterium diphtheriae. These long-chain fatty acids are involved in the unusual architecture and impermeability of the cell envelope of these bacteria. The condensase, the enzyme responsible for the final condensation step in mycolic acid biosynthesis, has remained an enigma for decades. By in silico analysis of various mycobacterial genomes, we identified a candidate enzyme, Pks13, that contains the four catalytic domains required for the condensation reaction. Orthologs of this enzyme were found in other Corynebacterineae species. A Corynebacterium glutamicum strain with a deletion in the pks13 gene was shown to be deficient in mycolic acid production whereas it was able to produce the fatty acids precursors. This mutant strain displayed an altered cell envelope structure. We showed that the pks13 gene was essential for the survival of Mycobacterium smegmatis. A conditional M. smegmatis mutant carrying its only copy of pks13 on a thermosensitive plasmid exhibited mycolic acid biosynthesis defect if grown at nonpermissive temperature. These results indicate that Pks13 is the condensase, a promising target for the development of new antimicrobial drugs against Corynebacterineae.
Molecular Microbiology | 1999
Mary Jackson; Catherine Raynaud; Marie-Antoinette Lanéelle; Christophe Guilhot; Christine Laurent-Winter; Danielle Ensergueix; Brigitte Gicquel; Mamadou Daffé
The antigen 85 complex of Mycobacterium tuberculosis consists of three abundantly secreted proteins. The recent characterization of a mycoloyltransferase activity associated in vitro with each of these antigens suggested that they are potentially important for the building of the unusual cell envelope of mycobacteria. To define the physiological role of these proteins, the gene coding for antigen 85C was inactivated by transposon mutagenesis. The resulting mutant was shown to transfer 40% fewer mycolates to the cell wall with no change in the types of mycolates esterifying arabinogalactan or in the composition of non‐covalently linked mycolates. As a consequence, the diffusion of the hydrophobic chenodeoxycholate and the hydrophilic glycerol, but not that of isoniazid, was found to be much faster through the cell envelope of the mutant than that of the parent strain. Taken together, these data demonstrate that: (i) antigen 85C is involved directly or indirectly in the transfer of mycolates onto the cell wall of the whole bacterium; (ii) the enzyme is not specific for a given type of mycolate; and (iii) the cell wall‐linked mycolate layer may represent a barrier for the diffusion of small hydrophobic and hydrophilic molecules.
PLOS ONE | 2009
Fabienne Ripoll; Sophie Pasek; Chantal Schenowitz; Carole Dossat; Valérie Barbe; Martin Rottman; Edouard Macheras; Beate Heym; Jean-Louis Herrmann; Mamadou Daffé; Roland Brosch; Jean-Loup Risler; Jean-Louis Gaillard
Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM) causing a pseudotuberculous lung disease to which patients with cystic fibrosis (CF) are particularly susceptible. We report here its complete genome sequence. The genome of M. abscessus (CIP 104536T) consists of a 5,067,172-bp circular chromosome including 4920 predicted coding sequences (CDS), an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are encoded by genes belonging to a “mycobacterial” gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein LpqH precursors). However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+) transporter) appear to have been horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g. Rhodococcus sp., Streptomyces sp.) and pseudomonads. We also identified several metabolic regions acquired from actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid degradation, DNA degradation) not present in the M. smegmatis genome. Many of the “non mycobacterial” factors detected in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM, and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients.
PLOS Pathogens | 2010
Musa Sani; Edith N. G. Houben; Jeroen Geurtsen; Jason Pierson; Karin de Punder; Maaike van Zon; Brigitte Wever; Sander R. Piersma; Connie R. Jimenez; Mamadou Daffé; Ben J. Appelmelk; Wilbert Bitter; Nicole N. van der Wel; Peter J. Peters
The cell envelope of mycobacteria, a group of Gram positive bacteria, is composed of a plasma membrane and a Gram-negative-like outer membrane containing mycolic acids. In addition, the surface of the mycobacteria is coated with an ill-characterized layer of extractable, non-covalently linked glycans, lipids and proteins, collectively known as the capsule, whose occurrence is a matter of debate. By using plunge freezing cryo-electron microscopy technique, we were able to show that pathogenic mycobacteria produce a thick capsule, only present when the cells were grown under unperturbed conditions and easily removed by mild detergents. This detergent-labile capsule layer contains arabinomannan, α-glucan and oligomannosyl-capped glycolipids. Further immunogenic and proteomic analyses revealed that Mycobacterium marinum capsule contains high amounts of proteins that are secreted via the ESX-1 pathway. Finally, cell infection experiments demonstrated the importance of the capsule for binding to cells and dampening of pro-inflammatory cytokine response. Together, these results show a direct visualization of the mycobacterial capsular layer as a labile structure that contains ESX-1-secreted proteins.
Microbiology | 2001
Virginie Puech; Mohamed Chami; Marie-Antoinette Lanéelle; Bettina Schiffler; Pierre Gounon; Nicolas Bayan; Roland Benz; Mamadou Daffé
With the recent success of the heterologous expression of mycobacterial antigens in corynebacteria, in addition to the importance of these bacteria in biotechnology and medicine, a better understanding of the structure of their cell envelopes was needed. A combination of molecular compositional analysis, ultrastructural appearance and freeze-etch electron microscopy study was used to arrive at a chemical model, unique to corynebacteria but consistent with their phylogenetic relatedness to mycobacteria and other members of the distinctive suprageneric actinomycete taxon. Transmission electron microscopy and chemical analyses showed that the cell envelopes of the representative strains of corynebacteria examined consisted of (i) an outer layer composed of polysaccharides (primarily a high-molecular-mass glucan and arabinomannans), proteins, which include the mycoloyltransferase PS1, and lipids; (ii) a cell wall glycan core of peptidoglycan-arabinogalactan which may contain other sugar residues and was usually esterified by corynomycolic acids; and (iii) a typical plasma membrane bilayer. Freeze-etch electron microscopy showed that most corynomycolate-containing strains exhibited a main fracture plane in their cell wall and contained low-molecular-mass porins, while the fracture occurred within the plasma membrane of strains devoid of both corynomycolate and pore-forming proteins. Importantly, in most strains, the amount of cell wall-linked corynomycolates was not sufficient to cover the bacterial surface; interestingly, the occurrence of a cell wall fracture plane correlated with the amount of non-covalently bound lipids of the strains. Furthermore, these lipids were shown to spontaneously form liposomes, indicating that they may participate in a bilayer structure. Altogether, the data suggested that the cell wall permeability barrier in corynebacteria involved both covalently linked corynomycolates and non-covalently bound lipids of their cell envelopes.
Molecular Microbiology | 2003
Lian-Yong Gao; Françoise Laval; Elise H. Lawson; Richard K. Groger; Andy Woodruff; J. Hiroshi Morisaki; Jeffery S. Cox; Mamadou Daffé; Eric J. Brown
Mycobacterium tuberculosis infects one‐third of the worlds population and causes two million deaths annually. The unusually low permeability of its cell wall contributes to the ability of M. tuberculosis to grow within host macrophages, a property required for pathogenesis of infection. Mycobacterium marinum is an established model for discovering genes involved in mycobacterial infection. Mycobacterium marinum mutants with transposon insertions in the β‐ketoacyl‐acyl carrier protein synthase B gene (kasB) grew poorly in macrophages, although growth in vitro was unaffected. Detailed analyses by thin‐layer chromatography, nuclear magnetic resonance (NMR), matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, infrared spectroscopy, and chemical degradations showed that the kasB mutants synthesize mycolic acids that are 2–4 carbons shorter than wild type; the defect was localized to the proximal portion of the meromycolate chain. In addition, these mutants showed a significant (∼30%) reduction in the abundance of keto‐mycolates, with a slight compensatory increase of both α‐ and methoxy‐mycolates. Despite these small changes in mycolate length and composition, the kasB mutants exhibited strikingly altered cell wall permeability, leading to a marked increase in susceptibility to lipophilic antibiotics and the host antimicrobial molecules defensin and lysozyme. The abnormalities of the kasB mutants were fully complemented by expressing M. tuberculosis kasB, but not by the closely related gene kasA. These studies identify kasB as a novel target for therapeutic intervention in mycobacterial diseases.