Man-Bo Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Man-Bo Li.
Nature Communications | 2015
Shubo Tian; Yi-Zhi Li; Man-Bo Li; Jinyun Yuan; Jinlong Yang; Zhikun Wu; Rongchao Jin
Revealing structural isomerism in nanoparticles using single-crystal X-ray crystallography remains a largely unresolved task, although it has been theoretically predicted with some experimental clues. Here we report a pair of structural isomers, Au38T and Au38Q, as evidenced using electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy, thermogravimetric analysis and indisputable single-crystal X-ray crystallography. The two isomers show different optical and catalytic properties, and differences in stability. In addition, the less stable Au38T can be irreversibly transformed to the more stable Au38Q at 50u2009°C in toluene. This work may represent an important advance in revealing structural isomerism at the nanoscale.
Nano Letters | 2015
Chuanhao Yao; Jishi Chen; Man-Bo Li; Liren Liu; Jinlong Yang; Zhikun Wu
Alloy nanoparticles with atomic monodispersity is of importance for some fundamental research (e.g., the investigation of active sites). However, the controlled preparation of alloy nanoparticles with atomic monodispersity has long been a major challenge. Herein, for the first time a unique method, antigalvanic reduction (AGR), is introduced to synthesize atomically monodisperse Au25Ag2(SC2H4Ph)18 in high yield (89%) within 2 min. Interestingly, the two silver atoms in Au25Ag2(SC2H4Ph)18 do not replace the gold atoms in the precursor particle Au25(SC2H4Ph)18 but collocate on Au25, which was supported by experimental and calculated results. Also, the two silver atoms are active to play roles in stabilizing the alloy nanoparticle, triggering the nanoparticle fluorescence and catalyzing the hydrolysis of 1,3-diphenylprop-2-ynyl acetate.
Journal of the American Chemical Society | 2016
Lingwen Liao; Shengli Zhuang; Chuanhao Yao; Nan Yan; Jishi Chen; Chengming Wang; Nan Xia; Xu Liu; Man-Bo Li; Lingling Li; Xiaoli Bao; Zhikun Wu
The 18-electron shell closure structure of Au nanoclusters protected by thiol ligands has not been reported until now. Herein, we synthesize a novel nanocluster bearing the same gold atom number but a different thiolate number as another structurally resolved nanocluster Au44(TBBT)28 (TBBTH = 4-tert-butylbenzenelthiol). The new cluster was determined to be Au44(2,4-DMBT)26 (2,4-DMBTH = 2,4-dimethylbenzenethiol) using multiple techniques, including mass spectrometry and single crystal X-ray crystallography (SCXC). Au44(2,4-DMBT)26 represents the first 18-electron closed-shell gold nanocluster. SCXC reveals that the atomic structure of Au44(2,4-DMBT)26 is completely different from that of Au44(TBBT)28 but is similar to the structure of Au38Q. The arrangement of staples (bridging thiolates) and part of the Au29 kernel atom induces the chirality of Au44(2,4-DMBT)26. The finding that a small portion of the gold kernel exhibits chirality is interesting because it has not been previously reported to the best of our knowledge. Although Au44(2,4-DMBT)26 bears an 18-electron shell closure structure, it is less thermostable than Au44(TBBT)28, indicating that multiple factors contribute to the thermostability of gold nanoclusters. Surprisingly, the small difference in Au/thiolate molar ratio between Au44(2,4-DMBT)26 and Au44(TBBT)28 leads to a dramatic distinction in Au 4f X-ray photoelectron spectroscopy, where it is found that the charge state of Au in Au44(2,4-DMBT)26 is remarkably more positive than that in Au44(TBBT)28 and even slightly more positive than the charge states of gold in Au-(2,4-DMBT) or Au-TBBT complexes.
Nature Communications | 2017
Zibao Gan; Jishi Chen; Juan Wang; Chengming Wang; Man-Bo Li; Chuanhao Yao; Shengli Zhuang; An Xu; Lingling Li; Zhikun Wu
Metal nanoclusters have recently attracted extensive interest not only for fundamental scientific research, but also for practical applications. For fundamental scientific research, it is of major importance to explore the internal structure and crystallographic arrangement. Herein, we synthesize a gold nanocluster whose composition is determined to be Au60S6(SCH2Ph)36 by using electrospray ionization mass spectrometry and single crystal X-ray crystallography (SCXC). SCXC also reveals that Au60S6(SCH2Ph)36 consists of a fcc-like Au20 kernel protected by a pair of giant Au20S3(SCH2Ph)18 staple motifs, which contain 6 tetrahedral-coordinate μ4-S atoms not previously reported in the Au–S interface. Importantly, the fourth crystallographic closest-packed pattern, termed 6H left-handed helical (6HLH) arrangement, which results in the distinct loss of solid photoluminescence of amorphous Au60S6(SCH2Ph)36, is found in the crystals of Au60S6(SCH2Ph)36. The solvent-polarity-dependent solution photoluminescence is also demonstrated. Overall, this work provides important insights about the structure, Au–S bonding and solid photoluminescence of gold nanoclusters.
Chemical Communications | 2015
Man-Bo Li; Shi-Kai Tian; Zhikun Wu; Rongchao Jin
Analytical Chemistry | 2016
Lingwen Liao; Chuanhao Yao; Chengming Wang; Shubo Tian; Jishi Chen; Man-Bo Li; Nan Xia; Nan Yan; Zhikun Wu
Nanoscale | 2014
Man-Bo Li; Shi-Kai Tian; Zhikun Wu
Chemistry of Materials | 2016
Man-Bo Li; Shi-Kai Tian; Zhikun Wu; Rongchao Jin
Nanoscale | 2017
Shengli Zhuang; Lingwen Liao; Man-Bo Li; Chuanhao Yao; Yan Zhao; Hongwei Dong; Jin Li; Haiteng Deng; Lingling Li; Zhikun Wu
Chinese Journal of Chemistry | 2017
Man-Bo Li; Shi-Kai Tian; Zhikun Wu