Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Man Hagiyama is active.

Publication


Featured researches published by Man Hagiyama.


Journal of Immunology | 2011

Enhanced Nerve–Mast Cell Interaction by a Neuronal Short Isoform of Cell Adhesion Molecule-1

Man Hagiyama; Tadahide Furuno; Yoichiroh Hosokawa; Takanori Iino; Takeshi Ito; Takao Inoue; Mamoru Nakanishi; Yoshinori Murakami; Akihiko Ito

Close apposition of nerve and mast cells is viewed as a functional unit of neuro-immune mechanisms, and it is sustained by trans-homophilic binding of cell adhesion molecule-1 (CADM1), an Ig superfamily member. Cerebral nerve–mast cell interaction might be developmentally modulated, because the alternative splicing pattern of four (a–d) types of CADM1 transcripts drastically changed during development of the mouse cerebrum: developing cerebrums expressed CADM1b and CADM1c exclusively, while mature cerebrums expressed CADM1d additionally and predominantly. To probe how individual isoforms are involved in nerve–mast cell interaction, Neuro2a neuroblastoma cells that express CADM1c endogenously were modified to express additionally either CADM1b (Neuro2a-CADM1b) or CADM1d (Neuro2a-CADM1d), and they were cocultured with mouse bone marrow-derived mast cells (BMMCs) and BMMC-derived cell line IC-2 cells, both of which expressed CADM1c. BMMCs were found to adhere to Neuro2a-CADM1d neurites more firmly than to Neuro2a-CADM1b neurites when the adhesive strengths were estimated from the femtosecond laser-induced impulsive forces minimally required for detaching BMMCs. GFP-tagging and crosslinking experiments revealed that the firmer adhesion site consisted of an assembly of CADM1d cis-homodimers. When Neuro2a cells were specifically activated by histamine, intracellular Ca2+ concentration was increased in 63 and 38% of CADM1c-expressing IC-2 cells that attached to the CADM1d assembly site and elsewhere, respectively. These results indicate that CADM1d is a specific neuronal isoform that enhances nerve–mast cell interaction, and they suggest that nerve–mast cell interaction may be reinforced as the brain grows mature because CADM1d becomes predominant.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Noncontact estimation of intercellular breaking force using a femtosecond laser impulse quantified by atomic force microscopy

Yoichiroh Hosokawa; Man Hagiyama; Takanori Iino; Yoshinori Murakami; Akihiko Ito

When a femtosecond laser pulse (fsLP) is focused through an objective lens into a culture medium, an impulsive force (fsLP-IF) is generated that propagates from the laser focal point (Of) in a micron-sized space. This force can detach individual adherent cells without causing considerable cell damage. In this study, an fsLP-IF was reflected in the vibratory movement of an atomic force microscopy (AFM) cantilever. Based on the magnitude of the vibration and the geometrical relationship between Of and the cantilever, the fsLP-IF generated at Of was calculated as a unit of impulse [N-s]. This impulsive force broke adhesion molecule-mediated intercellular interactions in a manner that depended on the adhesion strength that was estimated by the cell aggregation assay. The force also broke the interactions between streptavidin-coated microspheres and a biotin-coated substrate with a measurement error of approximately 7%. These results suggest that fsLP-IF can be used to break intermolecular and intercellular interactions and estimate the adhesion strength. The fsLP-IF was used to break intercellular contacts in two biologically relevant cultures: a coculture of leukocytes seeded over on an endothelial cell monolayer, and a polarized monolayer culture of epithelial cells. The impulses needed to break leukocyte–endothelial and interepithelial interactions, which were calculated based on the geometrical relationship between Of and the adhesive interface, were on the order of 10-13 and 10-12 N-s, respectively. When the total impulse at Of is well-defined, fsLP-IF can be used to estimate the force required to break intercellular adhesions in a noncontact manner under biologically relevant conditions.


Clinical Cancer Research | 2012

Upregulation of Notch2 and Six1 is associated with Progression of Early-Stage Lung Adenocarcinoma and a More Aggressive Phenotype at Advanced Stages

Takahiro Mimae; Morihito Okada; Man Hagiyama; Yoshihiro Miyata; Yasuhiro Tsutani; Takao Inoue; Yoshinori Murakami; Akihiko Ito

Purpose: Lung adenocarcinoma often manifests as tumors with mainly lepidic growth. The size of invasive foci determines a diagnosis of in situ, minimally invasive adenocarcinoma, or invasive types and suggests that some adenocarcinomas undergo malignant progression in that order. This study investigates how transcriptional aberrations in adenocarcinoma cells at the early stage define the clinical phenotypes of adenocarcinoma tumors at the advanced stage. Experimental Design: We comprehensively searched for differentially expressed genes between preinvasive and invasive cancer cells in one minimally invasive adenocarcinoma using laser capture microdissection and DNA microarrays. We screened expression of candidate genes in 11 minimally invasive adenocarcinomas by reverse transcriptase PCR and examined their involvement in preinvasive-to-invasive progression by transfection studies. We then immunohistochemically investigated the presence of candidate molecules in 64 samples of advanced adenocarcinoma and statistically analyzed the findings, together with clinicopathologic variables. Results: The transcription factors Notch2 and Six1 were upregulated in invasive cancer cells in all 11 minimally invasive adenocarcinomas. Exogenous Notch2 transactivated Six1 followed by Smad3, Smad4, and vimentin, and enlarged the nuclei of NCI-H441 lung epithelial cells. Immunochemical staining for the transcription factors was double positive in the invasive, but not in the lepidic growth component of a third of advanced Ads, and the disease-free survival rates were lower in such tumors. Conclusions: Paired upregulation of Notch2 and Six1 is a transcriptional aberration that contributes to preinvasive-to-invasive adenocarcinoma progression by inducing epithelial–mesenchymal transition and nuclear atypia. This aberration persisted in a considerable subset of advanced adenocarcinoma and conferred a more malignant phenotype on the subset. Clin Cancer Res; 18(4); 945–55. ©2011 AACR.


American Journal of Pathology | 2009

Expression of a Soluble Isoform of Cell Adhesion Molecule 1 in the Brain and Its Involvement in Directional Neurite Outgrowth

Man Hagiyama; Naoki Ichiyanagi; Keiko B. Kimura; Yoshinori Murakami; Akihiko Ito

Cell adhesion molecule 1 (CADM1), an immunoglobulin superfamily member, is expressed on superior cervical ganglion neurites and mediates cell-cell adhesion by trans-homophilic binding. In addition to the membrane-bound form, we have previously shown that a soluble form (sCADM1) generated by alternative splicing possesses a stop codon immediately downstream of the immunoglobulin-like domain. Here, we demonstrate the presence of sCADM1 in vivo and its possible role in neurite extension. sCADM1 appears to be a stromal protein because extracellular-restricted, but not intracellular-restricted, anti-CADM1 antibody stained stromal protein-rich extract from mouse brains. Murine plasmacytoma cells, P3U1, were modified to secrete sCADM1 fused with either immunoglobulin (Ig)G Fc portion (sCADM1-Fc) or its deletion form that lacks the immunoglobulin-like domain (DeltasCADM1-Fc). When P3U1 derivatives expressing sCADM1-Fc or DeltasCADM1-Fc were implanted into collagen gels, Fc-fused proteins were present more abundantly around the cells. Superior cervical ganglion neurons, parental P3U1, and either derivative were implanted into collagen gels separately, and co-cultured for 4 days. Bodian staining of the gel sections revealed that most superior cervical ganglion neurites turned toward the source of sCADM1-Fc, but not DeltasCADM1-Fc. Furthermore, immunofluorescence signals for sCADM1-Fc and membrane-bound CADM1 were co-localized on the neurite surface. These results show that sCADM1 appears to be involved in directional neurite extension by serving as an anchor to which membrane-bound CADM1 on the neurites can bind.


PLOS ONE | 2014

Gefitinib and Luteolin Cause Growth Arrest of Human Prostate Cancer PC-3 Cells via Inhibition of Cyclin G-Associated Kinase and Induction of miR-630

Minami A. Sakurai; Yuki Ozaki; Daisuke Okuzaki; Yoko Naito; Towa Sasakura; Ayumi Okamoto; Hiroe Tabara; Takao Inoue; Man Hagiyama; Akihiko Ito; Norikazu Yabuta; Hiroshi Nojima

Cyclin G-associated kinase (GAK), a key player in clathrin-mediated membrane trafficking, is overexpressed in various cancer cells. Here, we report that GAK expression is positively correlated with the Gleason score in surgical specimens from prostate cancer patients. Embryonic fibroblasts from knockout mice expressing a kinase-dead (KD) form of GAK showed constitutive hyper-phosphorylation of the epidermal growth factor receptor (EGFR). In addition to the well-known EGFR inhibitors gefitinib and erlotinib, the dietary flavonoid luteolin was a potent inhibitor of the Ser/Thr kinase activity of GAK in vitro. Co-administration of luteolin and gefitinib to PC-3 cells had a greater effect on cell viability than administration of either compound alone; this decrease in viability was associated with drastic down-regulation of GAK protein expression. A comprehensive microRNA array analysis revealed increased expression of miR-630 and miR-5703 following treatment of PC-3 cells with luteolin and/or gefitinib, and exogenous overexpression of miR-630 caused growth arrest of these cells. GAK appears to be essential for cell death because co-administration of gefitinib and luteolin to EGFR-deficient U2OS osteosarcoma cells also had a greater effect on cell viability than administration of either compound alone. Taken together, these findings suggest that GAK may be a new therapeutic target for prostate cancer and osteosarcoma.


Islets | 2012

Adhesion molecule CADM1 contributes to gap junctional communication among pancreatic islet α-cells and prevents their excessive secretion of glucagon

Akihiko Ito; Naoki Ichiyanagi; Yuki Ikeda; Man Hagiyama; Takao Inoue; Keiko B. Kimura; Minami A. Sakurai; Kazuyuki Hamaguchi; Yoshinori Murakami

Cell adhesion molecule-1 (CADM1) is a recently identified adhesion molecule of pancreatic islet α-cells that mediates nerve–α-cell interactions via trans-homophilic binding and serves anatomical units for the autonomic control of glucagon secretion. CADM1 also mediates attachment between adjacent α-cells. Since gap junctional intercellular communication (GJIC) among islet cells is essential for islet hormone secretion, we examined whether CADM1 promotes GJIC among α-cells and subsequently participates in glucagon secretion regulation. Dye transfer assays using αTC6 mouse α-cells, which endogenously express CADM1, supported this possibility; efficient cell-to-cell spread of gap junction-permeable dye was detected in clusters of αTC6 cells transfected with nonspecific, but not with CADM1-targeting, siRNA. Immunocytochemical analysis of connexin 36, a major component of the gap junction among αTC6 cells, revealed that it was localized exclusively to the cell membrane in CADM1-non-targeted αTC6 cells, but diffusely to the cytoplasm in CADM1-targeted cells. Next, we incubated CADM1-targeted and non-targeted αTC6 cells in a medium containing 1 mM glucose and 200 mM arginine for 30 min to induce glucagon secretion, and found that the targeted cells secreted three times more glucagon than did the non-targeted. We conducted similar experiments using pancreatic islets that were freshly isolated from wild-type and CADM1-knockout mice, and expressed glucagon secretion as ratios relative to baseline values. The increase in ratio was larger in CADM1-knockout islets than in wild-type islets. These results suggest that CADM1 may serve as a volume limiter of glucagon secretion by sustaining α-cell attachment necessary for efficient GJIC.


Thorax | 2014

Increased ectodomain shedding of lung epithelial cell adhesion molecule 1 as a cause of increased alveolar cell apoptosis in emphysema

Takahiro Mimae; Man Hagiyama; Takao Inoue; Azusa Yoneshige; Takashi Kato; Morihito Okada; Yoshinori Murakami; Akihiko Ito

Rationale Alveolar epithelial cell apoptosis and protease/antiprotease imbalance based proteolysis play central roles in the pathogenesis of pulmonary emphysema but molecular mechanisms underlying these two events are not yet clearly understood. Cell adhesion molecule 1 (CADM1) is a lung epithelial cell adhesion molecule in the immunoglobulin superfamily. It generates two membrane associated C terminal fragments (CTFs), αCTF and βCTF, through protease mediated ectodomain shedding. Objective To explore the hypothesis that more CADM1-CTFs are generated in emphysematous lungs through enhanced ectodomain shedding, and cause increased apoptosis of alveolar epithelial cells. Methods and results Western blot analyses revealed that CADM1-CTFs increased in human emphysematous lungs in association with increased ectodomain shedding. Increased apoptosis of alveolar epithelial cells in emphysematous lungs was confirmed by terminal nucleotide nick end labelling (TUNEL) assays. NCI-H441 lung epithelial cells expressing mature CADM1 but not CTFs were induced to express αCTF both endogenously (by shedding inducers phorbol ester and trypsin) and exogenously (by transfection). Cell fractionation, immunofluorescence, mitochondrial membrane potentiometric JC-1 dye labelling and TUNEL assays revealed that CADM1-αCTF was localised to mitochondria where it decreased mitochondrial membrane potential and increased cell apoptosis. A mutation in the intracytoplasmic domain abrogated all three abilities of αCTF. Conclusions CADM1 ectodomain shedding appeared to cause alveolar cell apoptosis in emphysematous lungs by producing αCTF that accumulated in mitochondria. These data link proteolysis to apoptosis, which are two landmark events in emphysema.


Biochemical and Biophysical Research Communications | 2012

Tumor suppressor cell adhesion molecule 1 (CADM1) is cleaved by a disintegrin and metalloprotease 10 (ADAM10) and subsequently cleaved by γ-secretase complex

Yusuke Nagara; Man Hagiyama; Naoya Hatano; Eugene Futai; Satoshi Suo; Yutaka Takaoka; Yoshinori Murakami; Akihiko Ito; Shoichi Ishiura

Cell adhesion molecule 1 (CADM1) is a type I transmembrane glycoprotein expressed in various tissues. CADM1 is a cell adhesion molecule with many functions, including roles in tumor suppression, apoptosis, mast cell survival, synapse formation, and spermatogenesis. CADM1 undergoes membrane-proximal cleavage called shedding, but the sheddase and mechanisms of CADM1 proteolysis have not been reported. We determined the cleavage site involved in CADM1 shedding by LC/MS/MS and showed that CADM1 shedding occurred in the membrane fraction and was inhibited by tumor necrosis factor-α protease inhibitor-1 (TAPI-1). An siRNA experiment revealed that ADAM10 mediates endogenous CADM1 shedding. In addition, the membrane-bound fragment generated by shedding was further cleaved by γ-secretase and generated CADM1-intracellular domain (ICD) in a mechanism called regulated intramembrane proteolysis (RIP). These results clarify the detailed mechanism of membrane-proximal cleavage of CADM1, suggesting the possibility of RIP-mediated CADM1 signaling.


British Journal of Dermatology | 2013

Increased expression of cell adhesion molecule 1 by mast cells as a cause of enhanced nerve-mast cell interaction in a hapten-induced mouse model of atopic dermatitis

Man Hagiyama; Takao Inoue; Tadahide Furuno; Takanori Iino; S. Itami; Mamoru Nakanishi; Yoichiroh Hosokawa; Akihiko Ito

Background  Neuroimmunological disorders are involved in the pathogenesis of atopic dermatitis (AD), partly through enhanced sensory nerve–skin mast cell interaction. Cell adhesion molecule 1 (CADM1) is a mast‐cell adhesion molecule that mediates the adhesion to, and communication with, sympathetic nerves.


Journal of Neuroimmunology | 2012

Cell adhesion molecule 1 (CADM1) on mast cells promotes interaction with dorsal root ganglion neurites by heterophilic binding to nectin-3

Tadahide Furuno; Man Hagiyama; Miho Sekimura; Keisuke Okamoto; Ryo Suzuki; Akihiko Ito; Naohide Hirashima; Mamoru Nakanishi

Cell adhesion molecule 1 (CADM1) on mast cells promotes attachment and communication with neurons by homophilic binding. However, we found that mast cell CADM1 was responsible for both the attachment of mast cells to dorsal root ganglia (DRG) neurites and their calcium responses to activated DRG neurites, despite the low expression of CADM1 in DRG. Instead, nectin-3 was expressed on DRG neurons and localized to regions of cell-cell contact. A neutralizing antibody to nectin-3 inhibited both mast cell attachment and subsequent calcium responses. This suggests that heterophilic binding between CADM1 and nectin-3 mediates functional DRG-mast cell interactions in vitro.

Collaboration


Dive into the Man Hagiyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoichiroh Hosokawa

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takanori Iino

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge