Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Man Tong is active.

Publication


Featured researches published by Man Tong.


Environmental Science & Technology | 2011

Pd-catalytic in situ generation of H2O2 from H2 and O2 produced by water electrolysis for the efficient electro-fenton degradation of rhodamine B.

Songhu Yuan; Ye Fan; Yucheng Zhang; Man Tong; Peng Liao

A novel electro-Fenton process was developed for wastewater treatment using a modified divided electrolytic system in which H2O2 was generated in situ from electro-generated H2 and O2 in the presence of Pd/C catalyst. Appropriate pH conditions were obtained by the excessive H+ produced at the anode. The performance of the novel process was assessed by Rhodamine B (RhB) degradation in an aqueous solution. Experimental results showed that the accumulation of H2O2 occurred when the pH decreased and time elapsed. The maximum concentration of H2O2 reached 53.1 mg/L within 120 min at pH 2 and a current of 100 mA. Upon the formation of the Fenton reagent by the addition of Fe2+, RhB degraded completely within 30 min at pH 2 with a pseudo first order rate constant of 0.109 ± 0.009 min(-1). An insignificant decline in H2O2 generation and RhB degradation was found after six repetitions. RhB degradation was achieved by the chemisorption of H2O2 on the Pd/C surface, which subsequently decomposed into •OH upon catalysis by Pd0 and Fe2+. The catalytic decomposition of H2O2 to •OH by Fe2+ was more powerful than that by Pd0, which was responsible for the high efficiency of this novel electro-Fenton process.


Water Research | 2014

An integrated catalyst of Pd supported on magnetic Fe3O4 nanoparticles: Simultaneous production of H2O2 and Fe2+ for efficient electro-Fenton degradation of organic contaminants

Mingsen Luo; Songhu Yuan; Man Tong; Peng Liao; Wenjing Xie; Xiaofeng Xu

A novel electro-Fenton process based on Pd-catalytic production of H2O2 from H2 and O2 has been proposed recently for transforming organic contaminants in wastewaters and groundwater. However, addition of Fe(II) complicates the operation, and it is difficult to recycle Pd catalyst after treatment. This study attempts to synthesize an integrated catalyst by loading Pd onto magnetic Fe3O4 nanoparticles (Pd/MNPs) so that H2O2 and Fe(2+) can be produced simultaneously in the electrolytic system. In an undivided electrolytic cell, phenol, a probe organic contaminant, is degraded by 98% within 60 min under conditions of 50 mA, 1 g/L Pd/MNPs (5 wt% Pd), pH 3 and 20 mg/L initial concentration. The degradation rate peaks at pH 3, increases with increasing Pd loading and electric current and decreases with increasing initial concentration. A distinct mechanism, reductive dissolution of solid Fe(III) in Fe3O4 by atomic H chemisorbed on Pd surface, is responsible for Fe(2+) production from Pd/MNPs. The efficiency of phenol degradation can be sustained at the same level for ten times of repeated treatment using the Pd/MNPs catalyst. The variations of main crystal structure and magnetic property of catalysts are minimal after treatment, but low concentrations of Pd leached, which needs further evaluation.


Water Research | 2013

Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater.

Wenjing Xie; Songhu Yuan; Xuhui Mao; Wei Hu; Peng Liao; Man Tong; Akram N. Alshawabkeh

A novel cathode, Pd loaded Ti/TiO2 nanotubes (Pd-Ti/TiO2NTs), is synthesized for the electrocatalytic reduction of trichloroethylene (TCE) in groundwater. Pd nanoparticles are successfully loaded on TiO2 nanotubes which grow on Ti plate via anodization. Using Pd-Ti/TiO2NTs as the cathode in an undivided electrolytic cell, TCE is efficiently and quantitatively transformed to ethane. Under conditions of 100 mA and pH 7, the removal efficiency of TCE (21 mg/L) is up to 91% within 120 min, following pseudo-first-order kinetics with the rate constant of 0.019 min(-1). Reduction rates increase from 0.007 to 0.019 min(-1) with increasing the current from 20 to 100 mA, slightly decrease in the presence of 10 mM chloride or bicarbonate, and decline with increasing the concentrations of sulfite or sulfide. O2 generated at the anode slightly influences TCE reduction. At low currents, TCE is mainly reduced by direct electron transfer on the Pd-Ti/TiO2NT cathode. However, the contribution of Pd-catalytic hydrodechlorination, an indirect reduction mechanism, becomes significant with increasing the current. Compared with other common cathodes, i.e., Ti-based mixed metal oxides, graphite and Pd/Ti, Pd-Ti/TiO2NTs cathode shows superior performance for TCE reduction.


Environmental Science & Technology | 2016

Production of Abundant Hydroxyl Radicals from Oxygenation of Subsurface Sediments

Man Tong; Songhu Yuan; Sicong Ma; Menggui Jin; Deng Liu; Dong Cheng; Xixiang Liu; Yiqun Gan; Yanxin Wang

Hydroxyl radicals (•OH) play a crucial role in the fate of redox-active substances in the environment. Studies of the •OH production in nature has been constrained to surface environments exposed to light irradiation, but is overlooked in the subsurface under dark. Results of this study demonstrate that abundant •OH is produced when subsurface sediments are oxygenated under fluctuating redox conditions at neutral pH values. The cumulative concentrations of •OH produced within 24 h upon oxygenation of 33 sediments sampled from different redox conditions are 2-670 μmol •OH per kg dry sediment or 6.7-2521 μM •OH in sediment pore water. Fe(II)-containing minerals, particularly phyllosilicates, are the predominant contributor to •OH production. This production could be sustainable when sediment Fe(II) is regenerated by the biological reduction of Fe(III) during redox cycles. Production of •OH is further evident in a field injection-extraction test through injecting oxygenated water into a 23-m depth aquifer. The •OH produced can oxidize pollutants such as arsenic and tetracycline and contribute to CO2 emissions at levels that are comparable with soil respiration. These findings indicate that oxygenation of subsurface sediments is an important source of •OH in nature that has not been previously identified, and •OH-mediated oxidation represents an overlooked process for substance transformations at the oxic/anoxic interface.


Environmental Science & Technology | 2013

Regulation of Electrochemically Generated Ferrous Ions from an Iron Cathode for Pd-Catalytic Transformation of MTBE in Groundwater

Peng Liao; Songhu Yuan; Mingjie Chen; Man Tong; Wenjing Xie; Peng Zhang

A novel Pd-based electro-Fenton (E-Fenton) process has recently been developed to transform organic contaminants in groundwater. However, it only produces H2O2 and requires addition of Fe(2+). In this study, an innovative approach is developed to effectively regulate the generation of Fe(2+) from an iron cathode in a three-electrode system in addition to H2O2 production. The Fe(2+) is then used for the Pd-catalytic transformation of methyl tert-butyl ether (MTBE) in groundwater. Results from batch experiments suggest Fe(2+) accumulation follows pseudo-first-order kinetics with rate quantitatively regulated by current and pH, and MTBE can be completely transformed. In a specially configured three-electrode column using iron as the first cathode, the localized acidic conditions develop automatically in the iron cathode and Pd zone by partitioning the current between the two cathodes, leading to controllable generation of Fe(2+) and H2O2. Effects of electrolyte concentrations and types as well as humic acid on MTBE transformation are slight. The stable transformation (~70%) in a long-term study (20 days) suggests this improved Pd-based E-Fenton process is sustainable to produce Fe(2+), H2O2, and appropriate pH conditions simultaneously for transforming organic contaminants. This study presents a new concept of generating Fe(2+) from an iron cathode for the processes requiring Fe(2+).


Environmental Science & Technology | 2014

Electrochemically induced oxidative precipitation of Fe(II) for As(III) oxidation and removal in synthetic groundwater.

Man Tong; Songhu Yuan; Peng Zhang; Peng Liao; Akram N. Alshawabkeh; Xianjun Xie; Yanxin Wang

Mobilization of Arsenic in groundwater is primarily induced by reductive dissolution of As-rich Fe(III) oxyhydroxides under anoxic conditions. Creating a well-controlled artificial environment that favors oxidative precipitation of Fe(II) and subsequent oxidation and uptake of aqueous As can serve as a remediation strategy. We reported a proof of concept study of a novel iron-based dual anode system for As(III) oxidation and removal in synthetic groundwater. An iron anode was used to produce Fe(II) under iron-deficient conditions, and another inert anode was used to generate O2 for oxidative precipitation of Fe(II). For 30 mins treatment, 6.67 μM (500 μg/L) of As(III) was completely oxidized and removed from the solution during the oxidative precipitation process when a total current of 60 mA was equally partitioned between the two anodes. The current on the inert anode determined the rate of O2 generation and was linearly related to the rates of Fe(II) oxidation and of As oxidation and removal, suggesting that the process could be manipulated electrochemically. The composition of Fe precipitates transformed from carbonate green rust to amorphous iron oxyhydroxide as the inert anode current increased. A conceptual model was proposed for the in situ application of the electrochemically induced oxidative precipitation process for As(III) remediation.


Journal of Hazardous Materials | 2016

Electrochemically induced oxidative removal of As(III) from groundwater in a dual-anode sand column.

Man Tong; Songhu Yuan; Zimeng Wang; Mingsen Luo; Yanxin Wang

In situ treatment of high-arsenic groundwater cost-effectively is still challenging. We proposed an in situ treatment approach which utilizes O2 produced from groundwater electrolysis to increase the redox potential for oxidative removal of arsenic. A sand column was configured to simulate groundwater flow in an aquifer, and a stable anode, a stable cathode and an iron anode were arrayed in an upward mode in the column to evaluate the performance on arsenic removal from the groundwater induced by the oxidative precipitation of Fe(2+) by O2. As(III) at 500μg/L was efficiently oxidized to As(V) by the stable anode followed by the reactive oxidants produced from Fe(II)-O2, and total As were completely removed by the newly formed amorphous iron hydroxides. Quantitative models for the dependence of As(III) oxidation, total As removal and Fe(II) oxidative precipitation on the flow rate and the current density applied to Fe anode were developed. The presence of humic substance promoted the oxidation of As(III) on the stable anode but inhibited the oxidation and removal induced by Fe(II) oxidative precipitation. A stable performance on As(III) oxidation and removal was observed in a 10-day continuous operation. Results from this study prove that groundwater electrolysis could be applicable for oxidative removal of As(III) in porous media, with a controllable and lasting treatment efficiency.


Environmental Science & Technology | 2017

Iron-Anode Enhanced Sand Filter for Arsenic Removal from Tube Well Water

Shiwei Xie; Songhu Yuan; Peng Liao; Man Tong; Yiqun Gan; Yanxin Wang

Sand filters are widely used for well water purification in endemic arsenicosis areas, but arsenic (As) removal is difficult at low intrinsic iron concentrations. This work developed an enhanced sand filter by electrochemically generated Fe(II) from an iron anode. The efficiency of As removal was tested in an arsenic burdened region in the Jianghan Plain, central China. By controlling a current of 0.6 A and a flow rate of about 12 L/h, the filter removed total As in the tube well water from 196 to 472 μg/L to below 10 μg/L, whereas the residual As was about 110 μg/L without electricity. Adsorption and subsequent oxidation on the surface of Fe(III) precipitates are the main processes controlling the removals of As and Fe. During a 30-day intermittent operation, both effluent As concentration and electrical energy consumption decreased progressively. Although filter clogging was observed, it can be alleviated by replacing the top layer of sand. Our findings suggest that dosing Fe(II) by an iron anode is an effective means to enhance As removal in a sand filter.


Journal of Contaminant Hydrology | 2014

Transformation and removal of arsenic in groundwater by sequential anodic oxidation and electrocoagulation

Peng Zhang; Man Tong; Songhu Yuan; Peng Liao

Oxidation of As(III) to As(V) is generally essential for the efficient remediation of As(III)-contaminated groundwater. The performance and mechanisms of As(III) oxidation by an as-synthesized active anode, SnO2 loaded onto Ti-based TiO2 nanotubes (Ti/TiO2NTs/Sb-SnO2), were investigated. The subsequent removal of total arsenic by electrocoagulation (EC) was further tested. The Ti/TiO2NTs/Sb-SnO2 anode showed a high and lasting electrochemical activity for As(III) oxidation. 6.67μM As(III) in synthetic groundwater was completely oxidized to As(V) within 60min at 50mA. Direct electron transfer was mainly responsible at the current below 30mA, while hydroxyl radicals contributed increasingly with the increase in the current above 30mA. As(III) oxidation was moderately inhibited by the presence of bicarbonate (20mM), while was dramatically increased with increasing the concentration of chloride (0-10mM). After the complete oxidation of As(III) to As(V), total arsenic was efficiently removed by EC in the same reactor by reversing electrode polarity. The removal efficiency increased with increasing the current but decreased by the presence of phosphate and silica. Anodic oxidation represents an effective pretreatment approach to increasing EC removal of As(III) in groundwater under O2-limited conditions.


Environmental Science & Technology | 2015

A New Mechanism in Electrochemical Process for Arsenic Oxidation: Production of H2O2 from Anodic O2 Reduction on the Cathode under Automatically Developed Alkaline Conditions.

Ao Qian; Songhu Yuan; Peng Zhang; Man Tong

Electrochemical cathodes are often used to reduce contaminants or produce oxidizing substances (i.e., H2O2). Alkaline conditions develop automatically around the cathode in electrochemical processes, and O2 diffuses onto the cathode easily. However, limited attention is paid to contaminant transformation by the reactive species produced on the cathode under oxic and alkaline conditions due to the inapplicability of pH for Fenton reaction. In this study, a new oxidation mechanism on the cathode is presented for contaminant transformation under automatically developed alkaline conditions. In an electrochemical sand column, 6.67 μM As(III) was oxidized by 36% when it passed through the cathode under the conditions of 30 mA current, an initial pH of 7.5 and a flow rate of 2 mL/min. Under the alkaline conditions (pH 10.0-11.0) that developed automatically around the cathode, the reduction potential of As(III) decreased greatly, allowing a pronounced oxidation by the small quantities of H2O2 produced from O2 reduction on the cathode. As(III) oxidation was further increased by the presence of soil pore water and groundwater solutes of HCO3-, Ca2+, Mg2+ and humic acid. The new oxidation mechanism found for the cathode under localized alkaline conditions supplements the fundamentals of contaminant transformation in electrochemical processes.

Collaboration


Dive into the Man Tong's collaboration.

Top Co-Authors

Avatar

Songhu Yuan

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Peng Liao

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Peng Zhang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Wenjing Xie

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Xixiang Liu

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Yanxin Wang

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Deng Liu

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar

Mingsen Luo

China University of Geosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ao Qian

China University of Geosciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge