Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manabu Fujimoto is active.

Publication


Featured researches published by Manabu Fujimoto.


Journal of Immunology | 2000

Quantitative Genetic Variation in CD19 Expression Correlates with Autoimmunity

Shinichi Sato; Minoru Hasegawa; Manabu Fujimoto; Thomas F. Tedder; Kazuhiko Takehara

Signaling thresholds influence the balance between humoral immunity and autoimmunity. Cell surface CD19 regulates intrinsic and Ag receptor-induced B lymphocyte signaling thresholds, and transgenic mice that overexpress CD19 by 3-fold generate spontaneous autoantibodies in a genetic background not associated with autoimmunity. To quantify the extent that genetically determined differences in expression of a single cell surface molecule can influence autoantibody production, we have assessed autoimmunity in a C57BL/6-transgenic mouse line with subtle 15–29% increases in CD19 cell surface expression (CD19 transgenic). Antinuclear Abs, especially anti-spindle pole Abs, rheumatoid factor, and autoantibodies for ssDNA, dsDNA, and histone were produced in these transgenic mice, but not littermate controls. This demonstrates that small changes in CD19 expression can induce autoantibody production. Remarkably, similar changes in CD19 expression were found on B cells from patients with systemic sclerosis, a multisystem disorder of connective tissue with autoantibody production. CD19 density on blood B cells from systemic sclerosis patients was significantly (∼20%) higher compared with normal individuals, whereas CD20, CD22, and CD40 expression were normal. These results suggest that modest changes in the expression or function of regulatory molecules such as CD19 may shift the balance between tolerance and immunity to autoimmunity. Thereby autoimmune disease may result from a collection of subtle multigenic alterations that could include incremental density changes in cell surface signaling molecules.


Cell | 2002

CD83 Expression Influences CD4+ T Cell Development in the Thymus

Yoko Fujimoto; LiLi Tu; Ann S. Miller; Cheryl B. Bock; Manabu Fujimoto; Carolyn Doyle; Douglas A. Steeber; Thomas F. Tedder

T lymphocyte selection and lineage commitment in the thymus requires multiple signals. Herein, CD4+ T cell generation required engagement of CD83, a surface molecule expressed by thymic epithelial and dendritic cells. CD83-deficient (CD83-/-) mice had a specific block in CD4+ single-positive thymocyte development without increased CD4+CD8+ double- or CD8+ single-positive thymocytes. This resulted in a selective 75%-90% reduction in peripheral CD4+ T cells, predominantly within the naive subset. Wild-type thymocytes and bone marrow stem cells failed to differentiate into mature CD4+ T cells when transferred into CD83-/- mice, while CD83-/- thymocytes and stem cells developed normally in wild-type mice. Thereby, CD83 expression represents an additional regulatory component for CD4+ T cell development in the thymus.


Immunity | 2000

CD19 Regulates Src Family Protein Tyrosine Kinase Activation in B Lymphocytes through Processive Amplification

Manabu Fujimoto; Yoko Fujimoto; Jonathan C. Poe; Paul J. Jansen; Clifford A. Lowell; Thomas F. Tedder

CD19 regulates constitutive and antigen receptor-induced signaling thresholds in B lymphocytes through its unique cytoplasmic domain. Herein, we demonstrate a novel molecular mechanism where interactions between CD19 and Lyn amplify basal and antigen receptor-induced Src family kinase activation. Lyn expression was required for CD19 tyrosine phosphorylation in primary B cells. Experiments with purified proteins demonstrated that CD19-Y513 was Lyns initial phosphorylation and binding site. This led to processive phosphorylation of CD19-Y482, which recruited a second Lyn molecule, allowing for transphosphorylation and amplification of Lyn activation. In vivo, CD19 deficiency impaired, and CD19 overexpression enhanced, Lyn kinase activity. Thus, CD19 functions as a specialized adapter protein for the amplification of Src family kinases that is crucial for intrinsic and antigen receptor-induced signal transduction.


Nature Immunology | 2004

CD22 regulates B lymphocyte function in vivo through both ligand-dependent and ligand-independent mechanisms.

Jonathan C. Poe; Yoko Fujimoto; Minoru Hasegawa; Karen M. Haas; Ann S. Miller; Isaac G. Sanford; Cheryl B. Bock; Manabu Fujimoto; Thomas F. Tedder

The interaction of CD22 with α2,6-linked sialic acid ligands has been widely proposed to regulate B lymphocyte function and migration. Here, we generated gene-targeted mice that express mutant CD22 molecules that do not interact with these ligands. CD22 ligand binding regulated the expression of cell surface CD22, immunoglobulin M and major histocompatibility complex class II on mature B cells, maintenance of the marginal zone B cell population, optimal B cell antigen receptor–induced proliferation, and B cell turnover rates. However, CD22 negative regulation of calcium mobilization after B cell antigen receptor ligation, CD22 phosphorylation, recruitment of SHP-1 to CD22 and B cell migration did not require CD22 ligand engagement. These observations resolve longstanding questions regarding the physiological importance of CD22 ligand binding in the regulation of B cell function in vivo.


Immunity | 1999

Modulation of B Lymphocyte Antigen Receptor Signal Transduction by a CD19/CD22 Regulatory Loop

Manabu Fujimoto; Alice Bradney; Jonathan C. Poe; Douglas A. Steeber; Thomas F. Tedder

CD19 and CD22 are B lymphocyte cell-surface molecules that positively and negatively regulate antigen receptor signal transduction, respectively. Biochemical studies with B cells from CD19-deficient and CD22-deficient mice indicated that these two regulatory molecules influenced each others functions: CD22 expression negatively regulated CD19 tyrosine phosphorylation, while optimal CD22 function was dependent on CD19 expression. Functional CD19 and CD22 interactions were also assessed in vivo by generating CD19/CD22 double-deficient mice. Remarkably, the CD19 mutation was dominant to the CD22 mutation in most instances. B lymphocytes from CD19/CD22-deficient and CD19-deficient mice were functionally equivalent despite the negative influence normally provided by CD22 expression. These data collectively suggest that CD19 activates the CD22/SHP1 inhibitory pathway that then acts primarily on CD19.


Journal of Biological Chemistry | 2000

CD22 Forms a Quaternary Complex with SHIP, Grb2, and Shc A PATHWAY FOR REGULATION OF B LYMPHOCYTE ANTIGEN RECEPTOR-INDUCED CALCIUM FLUX

Jonathan C. Poe; Manabu Fujimoto; Paul J. Jansen; Ann S. Miller; Thomas F. Tedder

CD22 is a cell surface molecule that regulates signal transduction in B lymphocytes. Tyrosine-phosphorylated CD22 recruits numerous cytoplasmic effector molecules including SHP-1, a potent phosphotyrosine phosphatase that down-regulates B cell antigen receptor (BCR)- and CD19-generated signals. Paradoxically, B cells from CD22-deficient mice generate augmented intracellular calcium responses following BCR ligation, yet proliferation is decreased. To understand further the mechanisms through which CD22 regulates BCR-dependent calcium flux and proliferation, interactions between CD22 and effector molecules involved in these processes were assessed. The adapter proteins Grb2 and Shc were found to interact with distinct and specific regions of the CD22 cytoplasmic domain. Src homology-2 domain-containing inositol polyphosphate-5′-phosphatase (SHIP) also bound phosphorylated CD22, but binding required an intact CD22 cytoplasmic domain. All three molecules were bound to CD22 when isolated from BCR-stimulated splenic B cells, indicating the formation of a CD22·Grb2·Shc·SHIP quaternary complex. Therefore, SHIP associating with CD22 may be important for SHIP recruitment to the cell surface where it negatively regulates calcium influx. Although augmented calcium responses in CD22-deficient mice should facilitate enhanced c-Jun N-terminal kinase (JNK) activation, BCR ligation did not induce JNK activation in CD22-deficient B cells. These data demonstrate that CD22 functions as a molecular “scaffold” that specifically coordinates the docking of multiple effector molecules, in addition to SHP-1, in a context necessary for BCR-dependent SHIP activity and JNK stimulation.


Journal of Immunology | 2000

The c-Abl Tyrosine Kinase Is Regulated Downstream of the B Cell Antigen Receptor and Interacts with CD19

Patricia A. Zipfel; Matthew Grove; Kevin Blackburn; Manabu Fujimoto; Thomas F. Tedder; Ann Marie Pendergast

c-Abl is a nonreceptor tyrosine kinase that we have recently linked to growth factor receptor signaling. The c-Abl kinase is ubiquitously expressed and localizes to the cytoplasm, plasma membrane, cytoskeleton, and nucleus. Thus, c-Abl may regulate signaling processes in multiple subcellular compartments. Targeted deletion or mutation of c-Abl in mice results in a variety of phenotypes, including splenic and thymic atrophy and lymphopenia. Additionally, lymphocytes isolated from specific compartments of c-Abl mutant mice have reduced responses to a variety of stimuli and an increased susceptibility to apoptosis following growth factor deprivation. Despite these observations, little is known regarding the signaling mechanisms responsible for these phenotypes. We report here that splenic B cells from c-Abl-deficient mice are hyporesponsive to the proliferative effects of B cell Ag receptor (BCR) stimulation. The c-Abl kinase activity and protein levels are elevated in the cytosol following activation of the BCR in B cell lines. We show that c-Abl associates with and phosphorylates the BCR coreceptor CD19, and that c-Abl and CD19 colocalize in lipid membrane rafts. These data suggest a role for c-Abl in the regulation of B cell proliferation downstream of the BCR, possibly through interactions with CD19.


Journal of Immunology | 2001

CD19 Can Regulate B Lymphocyte Signal Transduction Independent of Complement Activation

Minoru Hasegawa; Manabu Fujimoto; Jonathan C. Poe; Douglas A. Steeber; Thomas F. Tedder

B lymphocytes are critically regulated by signals transduced through the CD19-CD21 cell surface receptor complex, where complement C3d binding to CD21 supplies an already characterized ligand. To determine the extent that CD19 function is controlled by complement activation, CD19-deficient mice (that are hyporesponsive to transmembrane signals) and mice overexpressing CD19 (that are hyperresponsive) were crossed with CD21- and C3-deficient mice. Cell surface CD19 and CD21 expression were significantly affected by the loss of CD21 and C3 expression, respectively. Mature B cells from CD21-deficient littermates had ∼36% higher cell surface CD19 expression, whereas CD21/35 expression was increased by ∼45% on B cells from C3-deficient mice. Negative regulation of CD19 and CD21 expression by CD21 and C3, respectively, may be functionally significant because small increases in cell surface CD19 overexpression can predispose to autoimmunity. Otherwise, B cell development and function in CD19-deficient and -overexpressing mice were not significantly affected by a simultaneous loss of CD21 expression. Although CD21-deficient mice were found to express a hypomorphic cell surface CD21 protein at low levels that associated with mouse CD19, C3 deficiency did not significantly affect B cell development and function in CD19-deficient or -overexpressing mice. These results, and the severe phenotype exhibited by CD19-deficient mice compared with CD21- or C3-deficient mice, collectively demonstrate that CD19 can regulate B cell signaling thresholds independent of CD21 engagement and complement activation.


Immunologic Research | 2000

CD19 Regulates Intrinsic B Lymphocyte Signal Transduction and Activation Through a Novel Mechanism of Processive Amplification

Manabu Fujimoto; Jonathan C. Poe; Minoru Hasegawa; Thomas F. Tedder

The fate of B lymphocytes is dependent on intrinsic and B cell antigen receptor (BCR)-induced signals. These signals are interpreted and modified by response regulators such as CD19 that govern mature B cell activation. The current understanding of how CD19 governs B lymphocyte signaling is outlined in this review. Primarily, CD 19 establishes a novel Src-family kinase amplification loop that regulates basal signal transduction thresholds in resting B cells. Moreover, CD19 amplifies Src-family kinase activation following BCR ligation. CD19 amplification of Lyn activity leads to processive phosphorylation of CD19 and downstream substrates including CD22. Phosphorylated CD19 recruits other effector molecules including Vav, Grb2, phosphoinositide 3-kinase, phospholipase C γ2, and c-Abl, which may contribute to CD19 regulation of B cell function. CD19/Lyn complex formation also regulates phosphorylation of CD22 and FcγRIIB, which inhibit B cell signal transduction through the recruitment of the SHP1 and SHIP phosphatases. These observations provide insight into how CD19 governs the molecular ordering and intensity of signals transduced in B cells, and how perturbations in CD19 expression or signaling function may contribute to autoimmunity.


Journal of Immunology | 2001

A CD19-Dependent Signaling Pathway Regulates Autoimmunity in Lyn-Deficient Mice

Minoru Hasegawa; Manabu Fujimoto; Jonathan C. Poe; Douglas A. Steeber; Clifford A. Lowell; Thomas F. Tedder

CD19 and the Src family protein tyrosine kinases (PTKs) are important regulators of intrinsic signaling thresholds in B cells. Regulation is achieved by cross-talk between Src family PTKs and CD19; Lyn is essential for CD19 phosphorylation, while CD19 establishes an Src family PTK activation loop that amplifies kinase activity. However, CD19-deficient (CD19−/−) B cells are hyporesponsive to transmembrane signals, while Lyn-deficient (Lyn−/−) B cells exhibit a hyper-responsive phenotype resulting in autoimmunity. To identify the outcome of interactions between CD19 and Src family PTKs in vivo, B cell function was examined in mice deficient for CD19 and Lyn (CD19/Lyn−/−). Remarkably, CD19 deficiency suppressed the hyper-responsive phenotype of Lyn−/− B cells and autoimmunity characterized by serum autoantibodies and immune complex-mediated glomerulonephritis in Lyn−/− mice. Consistent with Lyn and CD19 each regulating conventional B cell development, B1 cell development was markedly reduced by Lyn deficiency, with further reductions in the absence of CD19 expression. Tyrosine phosphorylation of Fyn and other cellular proteins induced following B cell Ag receptor ligation was dramatically reduced in CD19/Lyn−/− B cells relative to Lyn−/− B cells, while Syk phosphorylation was normal. In addition, the enhanced intracellular Ca2+ responses following B cell Ag receptor ligation that typify Lyn deficiency were delayed by the loss of CD19 expression. BCR-induced proliferation and humoral immune responses were also markedly inhibited by CD19/Lyn deficiency. These findings demonstrate that while the CD19/Lyn amplification loop is a major regulator of signal transduction thresholds in B lymphocytes, CD19 regulation of other Src family PTKs also influences B cell function and the development of autoimmunity.

Collaboration


Dive into the Manabu Fujimoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge