Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manabu Nakano is active.

Publication


Featured researches published by Manabu Nakano.


Molecular Nutrition & Food Research | 2015

Phytoestrogenic activity of blackcurrant (Ribes nigrum) anthocyanins is mediated through estrogen receptor alpha

Naoki Nanashima; Kayo Horie; Toshiko Tomisawa; Mitsuru Chiba; Manabu Nakano; Toshifumi Fujita; Hayato Maeda; Maiko Kitajima; Shizuka Takamagi; Daishi Uchiyama; Jun Watanabe; Toshiya Nakamura; Yoji Kato

SCOPE Blackcurrants (Ribes nigrum L., Grossulariaceae) contain high amounts of anthocyanin polyphenols, which have antioxidant and anti-carcinogenic health benefits. This study analyzed the potential phytoestrogenic effects of blackcurrant extract (BCE) in breast cancer (MCF-7) and human endometrial cancer (Ishikawa) cell lines that over-express estrogen receptor alpha (ERα), as well as in immature female rats. METHODS AND RESULTS Microarray analysis and Ingenuity® Pathway Analysis showed that BCE activated the ERα pathway, whereas quantitative-PCR confirmed that BCE and four types of anthocyanins up-regulated genes downstream of ERα. BCE (0.1-1.0 μg/mL) and anthocyanins (0.1-10 μM) induced MCF-7 cell proliferation; however, this effect was blocked by ER antagonist fulvestrant. Flow cytometry showed that anthocyanins reduced and increased the number of MCF-7 cells in the G0/G1 and G2/M phases, respectively. Anthocyanins stimulated ERα transcriptional activity in human ERα reporter assays and induced alkaline phosphatase activity in Ishikawa cells. Competition assays and in silico analysis indicated that anthocyanins bind to ERα. Finally, BCE focally induced stratification of columnar epithelial cells in the rat uterus and increased cytoplasmic mucin levels in these cells. CONCLUSION These results suggest that blackcurrant anthocyanins act as phytoestrogens in vitro and in vivo.


Current Pharmaceutical Biotechnology | 2015

Mitigative Effects of a Combination of Multiple Pharmaceutical Drugs on the Survival of Mice Exposed to Lethal Ionizing Radiation

Tokuhisa Hirouchi; Koichi Ito; Manabu Nakano; Satoru Monzen; Hironori Yoshino; Mitsuru Chiba; Masaharu Hazawa; Akira Nakano; Junya Ishikawa; Masaru Yamaguchi; Kimio Tanaka; Ikuo Kashiwakura

It is important to establish an easy-to-use therapeutic protocol for the emergency medical care of patients involved in radiation accidents to reduce the radiation-related casualties. The present study aimed to establish an optimum therapeutic protocol using currently approved pharmaceutical drugs to increase the survival of victims exposed to lethal radiation. Different combinations of four drugs-recombinant human erythropoietin (EPO), granulocyte-colony stimulating factor (G-CSF), c-mpl receptor agonist romiplostim (RP) and nandrolone decanoate (ND)-were administered to mice within 2 h after exposure to a lethal 7 Gy dose of γ-irradiation. On day 30 after irradiation, the condition of the mice was analyzed using various hematological parameters, such as the number of peripheral blood cells, bone marrow cells, hematopoietic progenitor cells and the expression of cell surface antigens. Approximately 10% of the untreated irradiated control mice survived for 21 days, but all of the control mice died by day 30. The combined administration of G-CSF, EPO and RP for five days immediately after irradiation led to a complete survival of the irradiated mice until day 30. However, the treatment with G-CSF, EPO and RP with ND led to only 75% survival at day 30. The hematological analyses showed that the numbers of almost all of hematopoietic cells in the surviving mice treated with effective medications recovered to the levels of non-irradiated mice. The present findings show that the combination of G-CSF, EPO and RP may be a useful countermeasure for victims exposed to accidental lethal irradiation.


Allergology International | 2017

UDP/P2Y6 receptor signaling regulates IgE-dependent degranulation in human basophils

Manabu Nakano; Koichi Ito; Takeo Yuno; Nobuyuki Soma; Syun Aburakawa; Kosuke Kasai; Toshiya Nakamura; Hideki Takami

BACKGROUND P2Y purinergic receptors (P2YR) are G protein-coupled receptors that are stimulated by extracellular nucleotides. They mediate cellular effects by regulating cAMP production, protein kinase C activation, inositol trisphosphate generation, and Ca2+ release from intracellular stores. The P2Y6 receptor of this family is selectively stimulated by UDP, and selectively inhibited by MRS2578. In the present study, we examined the effect of UDP/P2Y6 receptor signaling on IgE-dependent degranulation in human basophils. METHODS Basophils were purified from human peripheral blood. The mRNA expression of genes encoding P2YR and ecto-nucleoside triphosphate diphosphohydrolase (ENTPDase) was measured by RT-PCR. Intracellular Ca2+ influx via UDP/P2Y6 receptor signaling in basophils was detected using a calcium probe. The effect of UDP/P2Y6 receptor signaling on IgE-dependent degranulation in basophils was confirmed by measuring CD63 expression by flow cytometry. Autocrine secretion of nucleotides was detected by HPLC analysis. RESULTS We showed that purified basophils express P2Y6 mRNA and that UDP increased intracellular Ca2+, which was reduced by MRS2578 treatment. UDP promoted IgE-dependent degranulation. Furthermore, MRS2578 inhibited IgE-dependent degranulation in basophils. HPLC analysis indicated that basophils spontaneously secrete UTP. In addition, basophils expressed the extracellular nucleotide hydrolases ENTPDase2, ENTPDase3, and ENTPDase8. CONCLUSIONS This study showed that UDP/P2Y6 receptor signaling is involved in the regulation of IgE-dependent degranulation in basophils, which might stimulate the P2Y6 receptor via the autocrine secretion of UTP. Thus, this receptor represents a potential target to regulate IgE-dependent degranulation in basophils during allergic diseases.


Molecular Medicine Reports | 2015

Effects of X‑ray irradiation in combination with ascorbic acid on tumor control

Yoichiro Hosokawa; Satoru Monzen; Hironori Yoshino; Shingo Terashima; Manabu Nakano; Keisuke Toshima; Ryo Saga; Ikuo Kashiwakura

Our previous studies demonstrated that the combination of treatment with ascorbic acid (AsA) and X‑ray irradiation results in increased apoptosis in HL60 cells. The present study was performed to investigate the effects of the combined use of AsA and X‑ray irradiation on epithelial cancer and sarcoma cells, and its potential use in future clinical treatment. X‑ray irradiation combined with AsA treatment resulted in increased suppression of cell growth of HT1080, SAS and A549 cells in vitro compared with X‑ray irradiation alone. The combined treatment also suppressed tumor growth in implanted HT‑1080 cells in vivo. Using annexin V/propidium iodide staining and the detection of activated caspase 3, it was found that X‑ray irradiation increased the apoptotic rate of HT1080 cells and resulted in G2/M arrest. However, apoptosis in the HT1080 cells treated with 5 mM AsA remained unchanged, and no changes were observed in the G2/M fraction. By contrast, AsA treatment caused increased suppression of proliferation compared with X‑ray irradiation. These results suggested that 5 mM AsA slowed the cell cycle and reduced tumor growth. Therefore, X‑ray irradiation combined with AsA treatment may be effective against epithelial cancer and sarcoma cells.


International Journal of Molecular Medicine | 2012

Damage of hair follicle stem cells and alteration of keratin expression in external radiation-induced acute alopecia

Naoki Nanashima; Koichi Ito; Takashi Ishikawa; Manabu Nakano; Toshiya Nakamura

Alopecia is known as a symptom of acute radiation, yet little is known concerning the mechanism of this phenomenon and the alteration of hair protein profiles. To examine this, 6-week-old male C57/BL6 mice were exposed to 6 Gy of X-ray irradiation, which caused acute alopecia. Their hair and skin were collected, and hair proteins were analyzed with liquid chromatography/electrospray-ionization mass spectrometry and immunohistochemistry. No change was observed in the composition of major hair keratins, such as Krt81, Krt83 and Krt86. However, cytokeratin Krt15 and CD34, which are known as hair follicle stem cell markers, were decreased in alopecic mice. Cytokeratin Krt5, which is known as a marker for basal and undifferentiated keratinocytes, was increased in the epidermis of alopecic mice. These findings suggest that radiation damages hair stem cells and the differentiation of keratinocytes in the epidermis. For the evaluation of radiation exposure, chromosomal aberration is considered to be the gold standard, yet our results suggest that Krt5 may be a novel biological marker for acute radiation symptoms.


Immunology Letters | 2012

Neutrophil phagocytosis is down-regulated by nucleotides until encounter with pathogens

Fujimi Kudo; Naoki Nishiguchi; Rika Mizuike; Hideaki Sato; Kyoko Ito; Manabu Nakano; Koichi Ito

Extracellular nucleotides such as ATP, ADP, UTP, UDP and UDPG can trigger intracellular signal transduction via purinergic (P2Y) receptors, and their interaction induces a wide range of biological effects in various cells. In this study, we investigated P2Y expression and the effects of nucleotides on chemotaxis and phagocytosis in human neutrophils. RT-PCR detected broad expression of P2Y subfamilies in neutrophils, as well as monocytes. Moreover, intracellular Ca(2+) increased in response to ATP, ADP, UTP and UDP in these cells, suggesting that P2Y receptors were functionally expressed. In neutrophils, chemotactic activity was increased significantly in response to ATP and ADP, and moderately in response to UTP and UDP; actin polymerization by ATP, ADP, UTP and UDP was also evident in the cells. Interestingly, we found that ATP and ADP, which enhanced chemotaxis activity significantly, had inhibitory effects on phagocytosis by neutrophils. These findings provide new evidence for the regulation of neutrophil phagocytosis by nucleotides. Furthermore, this inhibitory effect was completely lost upon co-culture with fMLP or LPS, known constituents of bacteria, resulting in recovery of normal phagocytic activity. Taken together, these findings suggest that ATP and ADP constantly stimulate the chemotactic activity of neutrophils in peripheral blood, but may inhibit their phagocytic activity until they encounter pathogens, in order to prevent them acting against self-tissues or cells, as fMLP and LPS commonly present in pathogens would again trigger normal phagocytic activity.


Radiation Protection Dosimetry | 2014

A novel parameter, cell-cycle progression index, for radiation dose absorbed estimation in the premature chromosome condensation assay.

Tomisato Miura; Akifumi Nakata; Kosuke Kasai; Manabu Nakano; Yu Abe; Eiki Tsushima; Natalia I. Ossetrova; Mitsuaki Yoshida; William F. Blakely

The calyculin A-induced premature chromosome condensation (PCC) assay is a simple and useful method for assessing the cell-cycle distribution in cells, since calyculin A induces chromosome condensation in various phases of the cell cycle. In this study, a novel parameter, the cell-cycle progression index (CPI), in the PCC assay was validated as a novel biomarker for biodosimetry. Peripheral blood was drawn from healthy donors after informed consent was obtained. CPI was investigated using a human peripheral blood lymphocyte (PBL) ex vivo irradiation ((60)Co-gamma rays: ∼0.6 Gy min(-1), or X ray: 1.0 Gy min(-1); 0-10 Gy) model. The calyculin A-induced PCC assay was performed for chromosome preparation. PCC cells were divided into the following five categories according to cell-cycle stage: non-PCC, G1-PCC, S-PCC, G2/M-PCC and M/A-PCC cells. CPI was calculated as the ratio of G2/M-PCC cells to G1-PCC cells. The PCC-stage distribution varied markedly with irradiation doses. The G1-PCC cell fraction was significantly reduced, and the G2/M-PCC cell fraction increased, in 10-Gy-irradiated PBL after 48 h of culture. CPI levels were fitted to an exponential dose-response curve with gamma-ray irradiation [y = 0.6729 + 0.3934 exp(0.5685D), r = 1.0000, p < 0.0001] and X-ray irradiation [y = -0.3743 + 0.9744 exp(0.3321D), r = 0.9999, p < 0.0001]. There were no significant individual (p = 0.853) or gender effects (p = 0.951) on the CPI in the human peripheral blood ex vivo irradiation model. Furthermore, CPI measurements are rapid (< 15 min per case). These results suggest that the CPI is a useful screening tool for the assessment of radiation doses received ranging from 0 to 10 Gy in radiation exposure early after a radiation event, especially after a mass-casualty radiological incident.


Biomedical Research-tokyo | 2013

4-Methylumbelliferone inhibits the phosphorylation of hyaluronan synthase 2 induced by 12-O-tetradecanoyl-phorbol-13-acetate

Yoshiyuki Kuroda; Kosuke Kasai; Naoki Nanashima; Hiroyuki Nozaka; Manabu Nakano; Mitsuru Chiba; Masahiko Yoneda; Toshiya Nakamura


Molecular Medicine Reports | 2017

Anthocyanin‑rich blackcurrant extract inhibits proliferation of the MCF10A healthy human breast epithelial cell line through induction of G0/G1 arrest and apoptosis

Naoki Nanashima; Kayo Horie; Mitsuru Chiba; Manabu Nakano; Hayato Maeda; Toshiya Nakamura


Journal of Immunology | 2013

Uracil nucleotides enhance the degranulation of human basophils induced by anti-IgE antibody via a purinergic receptor (P6016)

Manabu Nakano; Fujimi Kudo; Toshiya Nakamura; Kosuke Kasai; Kyoko Ito; Hideki Takami; Koichi Ito

Collaboration


Dive into the Manabu Nakano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge