Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manabu Ozawa is active.

Publication


Featured researches published by Manabu Ozawa.


Reproduction | 2010

Production of viable piglets for the first time using sperm derived from ectopic testicular xenografts.

Michiko Nakai; Hiroyuki Kaneko; T. Somfai; Naoki Maedomari; Manabu Ozawa; Junko Noguchi; Junya Ito; Naomi Kashiwazaki; Kazuhiro Kikuchi

Xenografting of testicular tissue into immunodeficient mice is known to be a valuable tool for facilitating the development of immature germ cells present in mammalian gonads. Spermatogenesis in xenografts and/or in vitro embryonic development to the blastocyst stage after ICSI of xenogeneic sperm has already been reported in large animals, including pigs; however, development of the embryos to term has not yet been confirmed. Therefore, in pigs, we evaluated the in vivo developmental ability of oocytes injected after ICSI of xenogeneic sperm. Testicular tissues prepared from neonatal piglets, which contain seminiferous cords consisting of only gonocytes/spermatogonia, were transplanted under the back skin of castrated nude mice. Between 133 and 280 days after xenografting, morphologically normal sperm were recovered, and a single spermatozoon was then injected into an in vitro matured porcine oocyte. After ICSI, the oocytes were electrostimulated and transferred into estrus-synchronized recipients. Two out of 23 recipient gilts gave birth to six piglets. Here, we describe for the first time that oocytes fertilized with a sperm from ectopic xenografts have the ability to develop to viable offspring in large mammals.


Biology of Reproduction | 2009

Live Piglets Derived from In Vitro-Produced Zygotes Vitrified at the Pronuclear Stage

T. Somfai; Manabu Ozawa; Junko Noguchi; Hiroyuki Kaneko; Michiko Nakai; Naoki Maedomari; Junya Ito; Naomi Kashiwazaki; Takashi Nagai; Kazuhiro Kikuchi

Abstract We report the successful cryopreservation of in vitro-produced porcine zygotes. Follicular oocytes from prepubertal gilts were matured (IVM), fertilized (IVF), and cultured (IVC) in vitro. At 10 or 23 h after IVF, the oocytes were centrifuged to visualize pronuclei. Zygotes with two or three pronuclei were used for solid surface vitrification (SSV). Survival of vitrified-warmed zygotes was determined by their morphology. To assess their developmental competence, vitrified (SSV), cryoprotectant-treated (CPA), and untreated (control) zygotes were subjected to IVC for 6 days. Survival and developmental competence did not differ between control and CPA zygotes. The proportion of live zygotes after SSV and warming (93.4%) was similar to that in the controls (100%). Cleavage and blastocyst formation rates of SSV zygotes after vitrification (71.7% and 15.8%, respectively) were significantly lower than those of controls (86.3% and 24.5%, respectively; ANOVA P < 0.05). Blastocyst cell numbers of SSV and control embryos were similar (41.2 ± 3.4 and 41.6 ± 3.3, respectively). There was no difference in developmental ability between zygotes cryopreserved at an early (10 h after IVF) or late (23 h after IVF) pronuclear stage. Storage in liquid nitrogen had no effect on the in vitro developmental competence of vitrified zygotes beyond the reduction induced by the vitrification itself. When the embryo culture medium was supplemented with 1 μM glutathione, the rate of development of cryopreserved zygotes to the blastocyst stage did not differ significantly from that of control glutathione-treated zygotes (18.6% and 22.1%, respectively). To test their ability to develop to term, vitrified zygotes were transferred to five recipients, resulting in three pregnancies and the production of a total of 17 piglets. These data demonstrate that IVM-IVF porcine zygotes can be cryopreserved at the pronuclear stage effectively without micromanipulation-derived delipation, preserving their full developmental competence to term.


Theriogenology | 2010

Production of good-quality porcine blastocysts by in vitro fertilization of follicular oocytes vitrified at the germinal vesicle stage

T. Somfai; Junko Noguchi; Hiroyuki Kaneko; Michiko Nakai; Manabu Ozawa; Naomi Kashiwazaki; István Egerszegi; J. Rátky; T. Nagai; Kazuhiro Kikuchi

We investigated survival, meiotic competence, cytoplasmic maturation, in vitro fertilization, and development of immature porcine (Sus scrofa) oocytes cryopreserved by a modified solid surface vitrification protocol. Cumulus-oocyte complexes (COCs) collected from follicles 3 to 6mm in diameter in abattoir-derived ovaries of prepubertal gilts were either vitrified (Vitrified group), subjected to cryoprotectant treatment (CPA group), or used without any treatment (Control group). Oocyte viability was assayed by staining with fluorescein diacetate. Live oocytes were matured in vitro and their meiotic progression investigated by nuclear staining. In a series of experiments, the glutathione (GSH) content of in vitro-matured oocytes and viability of cumulus cells were assayed simultaneously. The in vitro-matured oocytes were also fertilized and cultured in vitro to assess their ability to be fertilized and to develop to the blastocyst stage, respectively. The proportion of viable oocytes in the Vitrified group was significantly lower than that in the CPA and Control groups (27.7%, 90.4%, and 100%, respectively). Among the three groups, there were no differences in meiotic competence, cumulus viability, and GSH levels at the end of in vitro maturation. Fertilization parameters (i.e., rates of male pronucleus formation, monospermy, and second polar body extrusion) were also similar among groups. However, comparison of the developmental abilities of oocytes in the Vitrified, CPA, and Control groups revealed that the Vitrified group had a significantly reduced ability to undergo first cleavage (34.4%, 63.3%, and 69.0%) and to develop to the blastocyst stage (5.1%, 25.5%, and 34.6%). The mean total cell numbers in blastocysts after 6 d of culture were not significantly different among the Vitrified, CPA, and Control groups (40.3, 42.8, and 43.4). In conclusion, despite low survival rates and impaired development in the Vitrified group, meiotic competence, cytoplasmic maturation, and subsequent fertilization characteristics of surviving germinal vesicle oocytes were unaffected by vitrification, and high-quality blastocysts were produced from vitrified immature oocytes.


BMC Developmental Biology | 2012

Global gene expression of the inner cell mass and trophectoderm of the bovine blastocyst

Manabu Ozawa; Miki Sakatani; JiQiang Yao; Savita Shanker; Fahong Yu; Rui Yamashita; Shunichi Wakabayashi; Kenta Nakai; Kyle B. Dobbs; M. J. Sudano; William G. Farmerie; P. J. Hansen

BackgroundThe first distinct differentiation event in mammals occurs at the blastocyst stage when totipotent blastomeres differentiate into either pluripotent inner cell mass (ICM) or multipotent trophectoderm (TE). Here we determined, for the first time, global gene expression patterns in the ICM and TE isolated from bovine blastocysts. The ICM and TE were isolated from blastocysts harvested at day 8 after insemination by magnetic activated cell sorting, and cDNA sequenced using the SOLiD 4.0 system.ResultsA total of 870 genes were differentially expressed between ICM and TE. Several genes characteristic of ICM (for example, NANOG, SOX2, and STAT3) and TE (ELF5, GATA3, and KRT18) in mouse and human showed similar patterns in bovine. Other genes, however, showed differences in expression between ICM and TE that deviates from the expected based on mouse and human.ConclusionAnalysis of gene expression indicated that differentiation of blastomeres of the morula-stage embryo into the ICM and TE of the blastocyst is accompanied by differences between the two cell lineages in expression of genes controlling metabolic processes, endocytosis, hatching from the zona pellucida, paracrine and endocrine signaling with the mother, and genes supporting the changes in cellular architecture, stemness, and hematopoiesis necessary for development of the trophoblast.


Molecular and Cellular Endocrinology | 2011

Developmental changes in thermoprotective actions of insulin-like growth factor-1 on the preimplantation bovine embryo

A.Q.S. Bonilla; Lilian J. Oliveira; Manabu Ozawa; E.M. Newsom; M.C. Lucy; Peter J. Hansen

Insulin-like growth factor 1 (IGF1) is an important endocrine signal for regulation of early embryonic development. It increases the proportion of preimplantation embryos becoming blastocysts, alters blastocyst gene expression, improves resistance of embryos to various stresses and can enhance survival of embryos after transfer to recipients. The present study had two objectives. The first was to determine whether the thermoprotective actions of IGF1 on the preimplantation bovine embryo was developmentally regulated, with the two-cell embryo being refractory to IGF1. The second was to determine the molecular basis for the improved competence of embryos treated with IGF1 to establish pregnancy after transfer to heat-stressed recipients. Treatment of embryos with 100 ng/ml IGF1 reduced the effects of heat shock on embryos ≥16 cells at day 5 after insemination but did not provide thermoprotection to two-cell embryos. Failure of IGF1 to alter embryo survival after heat shock was not associated with reduced expression of genes involved in IGF1 signaling (IGF1R, RAF1, PI3K, and MAPK) or immunoreactive IGF1R protein. Treatment with IGF1 had little effect on the transcriptome at the blastocyst stage of development, with a total of 102 differentially expressed genes identified. Among the differentially expressed genes were several involved in apoptosis, protection against free radicals and development. Changes in gene expression were consistent with IGF1 acting to induce an anti-apoptotic state and inhibit neurulation. In conclusion, thermoprotective actions of IGF1 are developmentally regulated. Failure of IGF1 to protect the two-cell embryo from heat shock could reflect the fact that these embryos are maximally sensitive to damage caused by heat shock or reflect the quiescence of the embryonic genome at this stage of development. Changes in gene expression at the blastocyst stage induced by IGF1 could contribute to the increased survival of IGF1-treated embryos when transferred during periods of heat stress.


Biology of Reproduction | 2011

Fibroblast Growth Factor 2 Promotes Primitive Endoderm Development in Bovine Blastocyst Outgrowths

Qi-En Yang; Sarah D. Fields; Kun Zhang; Manabu Ozawa; Sally E. Johnson; Alan D. Ealy

Primitive endoderm (PE) is the second extraembryonic tissue to form during embryogenesis in mammals. The PE develops from pluripotent cells of the blastocyst inner cell mass. Experimental results described herein provide evidence that FGF2 stimulates PE development during bovine blastocyst development in vitro. Bovine blastocysts were cultured individually on a feeder layer-free, Matrigel-coated surface in the presence or absence of FGF2. A majority of blastocysts cultures formed outgrowths (76.8%) and the rate of outgrowth formation was not affected by FGF2 supplementation. However, supplementation with FGF2 increased the incidence of PE outgrowths on Days 13 and 15 after in vitro fertilization. Presumptive PE cultures contained cells with a phenotype distinct from trophectoderm (TE). Cell identity was validated by expression of GATA4 and GATA6 mRNA and transferrin protein, all markers of the PE lineage. Expression of GATA4 occurred coincident with blastocyst expansion and hatching. These cells did not express IFNT and CDX2 (TE lineage markers). Profiles of FGF receptor (FGFR) isoforms were distinct between PE and TE cultures. Specifically, FGFR1b and FGFR1c were the predominant FGFR transcripts in PE whereas FGFR2b transcripts were abundant in TE. Supplementation with FGF2 increased the mitotic index of PE but not TE. Moreover, FGF signaling appears important for initiation of PE formation in blastocysts, presumably by lineage committal from NANOG-positive epiblast cells, because chemical disruption of FGFR kinase activity with PD173074 reduces GATA4 expression and increases NANOG expression. Collectively, these results indicate that FGF2 and potentially other FGFs specify PE formation and mediate PE proliferation during early pregnancy in cattle.


Reproductive Biology and Endocrinology | 2006

Development to the blastocyst stage, the oxidative state, and the quality of early developmental stage of porcine embryos cultured in alteration of glucose concentrations in vitro under different oxygen tensions

Ni Wayan Kurniani Karja; Kazuhiro Kikuchi; Mokhamad Fahrudin; Manabu Ozawa; T. Somfai; Katsuhiko Ohnuma; Junko Noguchi; Hiroyuki Kaneko; Takashi Nagai

BackgroundRecent work has shown that glucose may induce cell injury through the action of free radicals generated by autooxidation or through hypoxanthine phosphoribosyltransferase inhibition. The effect of glucose during early in vitro culture (IVC) period of porcine embryos on their developmental competence, contents of reactive oxygen species (ROS) and glutathione (GSH), and the quality of the blastocysts yielded was examined.MethodsIn vitro matured and fertilized porcine oocytes were cultured for the first 2 days (Day 0 = day of fertilization) of IVC in NCSU-37 added with 1.5 to 20 mM glucose (Gluc-1.5 to -20 groups) or pyruvate and lactate (Pyr-Lac group). The embryos in all groups were cultured subsequently until Day 6 in NCSU-37 with 5.5 mM added glucose. The ROS and GSH level were measured at Day 1 and 2. DNA-fragmented nuclei and the total cell numbers in blastocyst were evaluated by TUNEL-staining at Day 6.ResultsUnder 5% oxygen the blastocyst rates and total cell numbers in the blastocysts in all glucose groups were significantly lower than that in the Pyr-Lac group. Similar result in blastocyst rate was found under 20% oxygen (excluding the Gluc-10 group), but total cell numbers in the blastocysts was similar among the groups. At both oxygen tensions, the H2O2 levels of Day 1 embryos in all glucose groups were significantly higher than that in the Pyr-Lac group, while only the Gluc-1.5 group of Day 2 embryos showed a significantly higher H2O2 level than that in the Pyr-Lac group. The GSH contents of either Day 1 or Day 2 embryos developed under 5% oxygen were similar among the groups. Only the content of Day 2 embryos in 1.5 mM group was significantly lower than the embryos in the Pyr-Lac group under 20% oxygen. Total cell numbers in the blastocysts (except in the Gluc-20 group) were significantly lower in the embryos cultured under 20% oxygen than 5% oxygen. Only the Gluc-20 blastocysts developed under 5% oxygen showed significantly higher DNA fragmentation rate than those of Pyr-Lac blastocysts.ConclusionThese results show that a decrease in developmental ability of embryos cultured by use of glucose instead of pyruvate and lactate after the ferilization may be due to the rise in ROS generation in Day 1 embryos. Moreover, results from this study suggest that the concentration of glucose in the medium that can be used by the Day 1–2 embryos is limited to 3.5 mM and exposure to higher glucose concentrations does not improve embryo development.


Journal of Pineal Research | 2005

Alleviation of maternal hyperthermia-induced early embryonic death by administration of melatonin to mice

Takaya Matsuzuka; Natsumi Sakamoto; Manabu Ozawa; Atsuko Ushitani; Miho Hirabayashi; Yukio Kanai

Abstract:  Maternal hyperthermia induces early embryonic death via increased oxidative stress to the embryo. In this study, we examined whether melatonin administered to heat‐stressed pregnant mice would reduce hyperthermia‐induced embryonic death. Mice were heat stressed (12 hr at 35°C, 60% relative humidity) on the day of mating and melatonin (3 mg/kg body weight) was injected subcutaneously every 2 hr during heat exposure. Thereafter, zygotes were collected, and in vitro developmental ability and intracellular glutathione (GSH) content were assessed. In addition, reactive oxygen species (ROS) levels and free radical scavenging activity (FRSA) in the oviduct as well as lipid peroxidation in the liver were measured. Melatonin administration was associated with a tendency for higher intracellular GSH content in zygotes (1.67 pmol/zygote) and a significantly higher percentage of embryos that developed to the morula or blastocyst stage (47.91%; P < 0.01) compared with the parameters in heat‐stressed mice that were administered a placebo (1.48 pmol GSH/zygote and 14.78% development). Lipid peroxidation levels in the liver and ROS levels in the oviduct were the same in melatonin‐treated stressed mice and the controls, while these parameters were significantly higher in heat‐stressed mice that were not treated with melatonin. Furthermore, FRSA in the oviduct was significantly (P < 0.05) higher in the melatonin‐treated mice than in the controls. These results suggest that administration of melatonin to heat‐stressed mice alleviates hyperthermia‐induced early embryonic death and that this is accomplished in part by maintaining a neutral redox status within the mother.


Biology of Reproduction | 2004

Redox Status of the Oviduct and Cdc2 Activity in 2-Cell Stage Embryos in Heat-Stressed Mice

Manabu Ozawa; Takaya Matsuzuka; Miho Hirabayashi; Yukio Kanai

Abstract Mammalian preimplantation embryos are vulnerable to heat stress. However, the mechanisms by which maternal heat stress compromises embryonic development are unclear. We hypothesized that the loss of developmental competence in maternally heat-stressed embryos results from enhanced oxidative stress in the oviducts. In experiment 1, oviducts and zygotes were collected from mice that were heat-stressed at 35°C and 60% relative humidity for 12 h on the day of pregnancy as well as from control mice. The zygotes were cultured for 84 h to assess their development, and the H2O2 level, glutathione concentration, and free radical scavenging activity (FRSA) were measured in the oviduct. In experiment 2, zygotes were cultured for 22 h to reach the late G2 phase in the 2-cell stage, and Cdc2 activity was assessed using immunoblotting. A high percentage (87.6%) of control embryos developed to morulae or blastocysts, whereas the majority (67.4%) of the heat-stressed group arrested at the 2-cell stage. Although heat stress did not alter the FRSA or glutathione concentration in the oviducts, the H2O2 level (P < 0.01) and its ratio to the FRSA (P < 0.05) significantly increased in the heat-stressed group. The Cdc2 activation at the 2-cell stage, as shown by the ratio of the dephosphorylated form to the phosphorylated form, was evident in control embryos but absent in heat-stressed embryos, and the level was similar to that in embryos blocked at the 2-cell stage (positive control). These results indicate that maternal heat stress enhances oxidative stress in the oviducts and that loss of developmental competence in maternally heat-stressed embryos correlates with a defect in Cdc2 activity at the 2-cell stage.


Reproductive Biology and Endocrinology | 2013

Changes in the transcriptome of morula-stage bovine embryos caused by heat shock: relationship to developmental acquisition of thermotolerance

Miki Sakatani; L. Bonilla; Kyle B. Dobbs; J. Block; Manabu Ozawa; Savita Shanker; JiQiang Yao; P. J. Hansen

BackgroundWhile initially sensitive to heat shock, the bovine embryo gains thermal resistance as it progresses through development so that physiological heat shock has little effect on development to the blastocyst stage by Day 5 after insemination. Here, experiments using 3’ tag digital gene expression (3’DGE) and real-time PCR were conducted to determine changes in the transcriptome of morula-stage bovine embryos in response to heat shock (40 degrees C for 8 h) that could be associated with thermotolerance.ResultsUsing 3’DGE, expression of 173 genes were modified by heat shock, with 94 genes upregulated by heat shock and 79 genes downregulated by heat shock. A total of 38 differentially-regulated genes were associated with the ubiquitin protein, UBC. Heat shock increased expression of one heat shock protein gene, HSPB11, and one heat shock protein binding protein, HSPBP1, tended to increase expression of HSPA1A and HSPB1, but did not affect expression of 64 other genes encoding heat shock proteins, heat shock transcription factors or proteins interacting with heat shock proteins. Moreover, heat shock increased expression of five genes associated with oxidative stress (AKR7A2, CBR1, GGH, GSTA4, and MAP2K5), decreased expression of HIF3A, but did not affect expression of 42 other genes related to free radical metabolism. Heat shock also had little effect on genes involved in embryonic development. Effects of heat shock for 2, 4 and 8 h on selected heat shock protein and antioxidant genes were also evaluated by real-time PCR. Heat shock increased steady-state amounts of mRNA for HSPA1A (P<0.05) and tended to increase expression of HSP90AA1 (P<0.07) but had no effect on expression of SOD1 or CAT.ConclusionsChanges in the transcriptome of the heat-shocked bovine morula indicate that the embryo is largely resistant to effects of heat shock. As a result, transcription of genes involved in thermal protection is muted and there is little disruption of gene networks involved in embryonic development. It is likely that the increased resistance of morula-stage embryos to heat shock as compared to embryos at earlier stages of development is due in part to developmental acquisition of mechanisms to prevent accumulation of denatured proteins and free radical damage.

Collaboration


Dive into the Manabu Ozawa's collaboration.

Top Co-Authors

Avatar

Kazuhiro Kikuchi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Hiroyuki Kaneko

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar

Junko Noguchi

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Nagai

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. Somfai

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mokhamad Fahrudin

Bogor Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge