Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manabu Torii is active.

Publication


Featured researches published by Manabu Torii.


Genome Biology | 2008

Overview of BioCreative II gene mention recognition

Larry Smith; Lorraine K. Tanabe; Rie Johnson nee Ando; Cheng-Ju Kuo; I-Fang Chung; Chun-Nan Hsu; Yu-Shi Lin; Roman Klinger; Christoph M. Friedrich; Kuzman Ganchev; Manabu Torii; Hongfang Liu; Barry Haddow; Craig A. Struble; Richard J. Povinelli; Andreas Vlachos; William A. Baumgartner; Lawrence Hunter; Bob Carpenter; Richard Tzong-Han Tsai; Hong-Jie Dai; Feng Liu; Yifei Chen; Chengjie Sun; Sophia Katrenko; Pieter W. Adriaans; Christian Blaschke; Rafael Torres; Mariana Neves; Preslav Nakov

Nineteen teams presented results for the Gene Mention Task at the BioCreative II Workshop. In this task participants designed systems to identify substrings in sentences corresponding to gene name mentions. A variety of different methods were used and the results varied with a highest achieved F1 score of 0.8721. Here we present brief descriptions of all the methods used and a statistical analysis of the results. We also demonstrate that, by combining the results from all submissions, an F score of 0.9066 is feasible, and furthermore that the best result makes use of the lowest scoring submissions.


BMC Bioinformatics | 2011

The gene normalization task in BioCreative III

Zhiyong Lu; Hung Yu Kao; Chih-Hsuan Wei; Minlie Huang; Jingchen Liu; Cheng-Ju Kuo; Chun-Nan Hsu; Richard Tzong-Han Tsai; Hong-Jie Dai; Naoaki Okazaki; Han-Cheol Cho; Martin Gerner; Illés Solt; Shashank Agarwal; Feifan Liu; Dina Vishnyakova; Patrick Ruch; Martin Romacker; Fabio Rinaldi; Sanmitra Bhattacharya; Padmini Srinivasan; Hongfang Liu; Manabu Torii; Sérgio Matos; David Campos; Karin Verspoor; Kevin Livingston; W. John Wilbur

BackgroundWe report the Gene Normalization (GN) challenge in BioCreative III where participating teams were asked to return a ranked list of identifiers of the genes detected in full-text articles. For training, 32 fully and 500 partially annotated articles were prepared. A total of 507 articles were selected as the test set. Due to the high annotation cost, it was not feasible to obtain gold-standard human annotations for all test articles. Instead, we developed an Expectation Maximization (EM) algorithm approach for choosing a small number of test articles for manual annotation that were most capable of differentiating team performance. Moreover, the same algorithm was subsequently used for inferring ground truth based solely on team submissions. We report team performance on both gold standard and inferred ground truth using a newly proposed metric called Threshold Average Precision (TAP-k).ResultsWe received a total of 37 runs from 14 different teams for the task. When evaluated using the gold-standard annotations of the 50 articles, the highest TAP-k scores were 0.3297 (k=5), 0.3538 (k=10), and 0.3535 (k=20), respectively. Higher TAP-k scores of 0.4916 (k=5, 10, 20) were observed when evaluated using the inferred ground truth over the full test set. When combining team results using machine learning, the best composite system achieved TAP-k scores of 0.3707 (k=5), 0.4311 (k=10), and 0.4477 (k=20) on the gold standard, representing improvements of 12.4%, 21.8%, and 26.6% over the best team results, respectively.ConclusionsBy using full text and being species non-specific, the GN task in BioCreative III has moved closer to a real literature curation task than similar tasks in the past and presents additional challenges for the text mining community, as revealed in the overall team results. By evaluating teams using the gold standard, we show that the EM algorithm allows team submissions to be differentiated while keeping the manual annotation effort feasible. Using the inferred ground truth we show measures of comparative performance between teams. Finally, by comparing team rankings on gold standard vs. inferred ground truth, we further demonstrate that the inferred ground truth is as effective as the gold standard for detecting good team performance.


Database | 2013

BioC: a minimalist approach to interoperability for biomedical text processing

Donald C. Comeau; Rezarta Islamaj Doğan; Paolo Ciccarese; Kevin Bretonnel Cohen; Martin Krallinger; Florian Leitner; Zhiyong Lu; Yifan Peng; Fabio Rinaldi; Manabu Torii; Alfonso Valencia; Karin Verspoor; Thomas C. Wiegers; Cathy H. Wu; W. John Wilbur

A vast amount of scientific information is encoded in natural language text, and the quantity of such text has become so great that it is no longer economically feasible to have a human as the first step in the search process. Natural language processing and text mining tools have become essential to facilitate the search for and extraction of information from text. This has led to vigorous research efforts to create useful tools and to create humanly labeled text corpora, which can be used to improve such tools. To encourage combining these efforts into larger, more powerful and more capable systems, a common interchange format to represent, store and exchange the data in a simple manner between different language processing systems and text mining tools is highly desirable. Here we propose a simple extensible mark-up language format to share text documents and annotations. The proposed annotation approach allows a large number of different annotations to be represented including sentences, tokens, parts of speech, named entities such as genes or diseases and relationships between named entities. In addition, we provide simple code to hold this data, read it from and write it back to extensible mark-up language files and perform some sample processing. We also describe completed as well as ongoing work to apply the approach in several directions. Code and data are available at http://bioc.sourceforge.net/. Database URL: http://bioc.sourceforge.net/


Journal of the American Medical Informatics Association | 2011

Using machine learning for concept extraction on clinical documents from multiple data sources

Manabu Torii; Kavishwar B. Wagholikar; Hongfang Liu

OBJECTIVE Concept extraction is a process to identify phrases referring to concepts of interests in unstructured text. It is a critical component in automated text processing. We investigate the performance of machine learning taggers for clinical concept extraction, particularly the portability of taggers across documents from multiple data sources. METHODS We used BioTagger-GM to train machine learning taggers, which we originally developed for the detection of gene/protein names in the biology domain. Trained taggers were evaluated using the annotated clinical documents made available in the 2010 i2b2/VA Challenge workshop, consisting of documents from four data sources. RESULTS As expected, performance of a tagger trained on one data source degraded when evaluated on another source, but the degradation of the performance varied depending on data sources. A tagger trained on multiple data sources was robust, and it achieved an F score as high as 0.890 on one data source. The results also suggest that performance of machine learning taggers is likely to improve if more annotated documents are available for training. CONCLUSION Our study shows how the performance of machine learning taggers is degraded when they are ported across clinical documents from different sources. The portability of taggers can be enhanced by training on datasets from multiple sources. The study also shows that BioTagger-GM can be easily extended to detect clinical concept mentions with good performance.


BMC Bioinformatics | 2011

dbOGAP - An Integrated Bioinformatics Resource for Protein O-GlcNAcylation

Jinlian Wang; Manabu Torii; Hongfang Liu; Gerald W. Hart; Zhang-Zhi Hu

BackgroundProtein O-GlcNAcylation (or O-GlcNAc-ylation) is an O-linked glycosylation involving the transfer of β-N-acetylglucosamine to the hydroxyl group of serine or threonine residues of proteins. Growing evidences suggest that protein O-GlcNAcylation is common and is analogous to phosphorylation in modulating broad ranges of biological processes. However, compared to phosphorylation, the amount of protein O-GlcNAcylation data is relatively limited and its annotation in databases is scarce. Furthermore, a bioinformatics resource for O-GlcNAcylation is lacking, and an O-GlcNAcylation site prediction tool is much needed.DescriptionWe developed a database of O-GlcNAcylated proteins and sites, dbOGAP, primarily based on literature published since O-GlcNAcylation was first described in 1984. The database currently contains ~800 proteins with experimental O-GlcNAcylation information, of which ~61% are of humans, and 172 proteins have a total of ~400 O-GlcNAcylation sites identified. The O-GlcNAcylated proteins are primarily nucleocytoplasmic, including membrane- and non-membrane bounded organelle-associated proteins. The known O-GlcNAcylated proteins exert a broad range of functions including transcriptional regulation, macromolecular complex assembly, intracellular transport, translation, and regulation of cell growth or death. The database also contains ~365 potential O-GlcNAcylated proteins inferred from known O-GlcNAcylated orthologs. Additional annotations, including other protein posttranslational modifications, biological pathways and disease information are integrated into the database. We developed an O-GlcNAcylation site prediction system, OGlcNAcScan, based on Support Vector Machine and trained using protein sequences with known O-GlcNAcylation sites from dbOGAP. The site prediction system achieved an area under ROC curve of 74.3% in five-fold cross-validation. The dbOGAP website was developed to allow for performing search and query on O-GlcNAcylated proteins and associated literature, as well as for browsing by gene names, organisms or pathways, and downloading of the database. Also available from the website, the OGlcNAcScan tool presents a list of predicted O-GlcNAcylation sites for given protein sequences.ConclusionsdbOGAP is the first public bioinformatics resource to allow systematic access to the O-GlcNAcylated proteins, and related functional information and bibliography, as well as to an O-GlcNAcylation site prediction tool. The resource will facilitate research on O-GlcNAcylation and its proteomic identification.


Journal of the American Medical Informatics Association | 2009

BioTagger-GM: A Gene/Protein Name Recognition System

Manabu Torii; Zhang-Zhi Hu; Cathy H. Wu; Hongfang Liu

OBJECTIVES Biomedical named entity recognition (BNER) is a critical component in automated systems that mine biomedical knowledge in free text. Among different types of entities in the domain, gene/protein would be the most studied one for BNER. Our goal is to develop a gene/protein name recognition system BioTagger-GM that exploits rich information in terminology sources using powerful machine learning frameworks and system combination. DESIGN BioTagger-GM consists of four main components: (1) dictionary lookup-gene/protein names in BioThesaurus and biomedical terms in UMLS Metathesaurus are tagged in text, (2) machine learning-machine learning systems are trained using dictionary lookup results as one type of feature, (3) post-processing-heuristic rules are used to correct recognition errors, and (4) system combination-a voting scheme is used to combine recognition results from multiple systems. MEASUREMENTS The BioCreAtIvE II Gene Mention (GM) corpus was used to evaluate the proposed method. To test its general applicability, the method was also evaluated on the JNLPBA corpus modified for gene/protein name recognition. The performance of the systems was evaluated through cross-validation tests and measured using precision, recall, and F-Measure. RESULTS BioTagger-GM achieved an F-Measure of 0.8887 on the BioCreAtIvE II GM corpus, which is higher than that of the first-place system in the BioCreAtIvE II challenge. The applicability of the method was also confirmed on the modified JNLPBA corpus. CONCLUSION The results suggest that terminology sources, powerful machine learning frameworks, and system combination can be integrated to build an effective BNER system.


IEEE Transactions on Neural Networks | 2002

Stability of steepest descent with momentum for quadratic functions

Manabu Torii; Martin T. Hagan

This paper analyzes the effect of momentum on steepest descent training for quadratic performance functions. We demonstrate that there always exists a momentum coefficient that will stabilize the steepest descent algorithm, regardless of the value of the learning rate. We also demonstrate how the value of the momentum coefficient changes the convergence properties of the algorithm.


Bioinformatics | 2006

An online literature mining tool for protein phosphorylation

X. Yuan; Zhang-Zhi Hu; Hank Wu; Manabu Torii; Meenakshi Narayanaswamy; K. E. Ravikumar; K. Vijay-Shanker; Cathy H. Wu

A web-based version of the RLIMS-P literature mining system was developed for online mining of protein phosphorylation information from MEDLINE abstracts. The online tool presents extracted phosphorylation objects (phosphorylated proteins, phosphorylation sites and protein kinases) in summary tables and full reports with evidence-tagged abstracts. The tool further allows mapping of phosphorylated proteins to protein entries in the UniProt Knowledgebase based on PubMed ID and/or protein name. The literature mining, coupled with database association, allows retrieval of rich biological information for the phosphorylated proteins and facilitates database annotation of phosphorylation features.


International Journal of Medical Informatics | 2011

An exploratory study of a text classification framework for Internet-based surveillance of emerging epidemics

Manabu Torii; Lanlan Yin; Thang Nguyen; Chand T. Mazumdar; Hongfang Liu; David M. Hartley; Noele P. Nelson

PURPOSE Early detection of infectious disease outbreaks is crucial to protecting the public health of a society. Online news articles provide timely information on disease outbreaks worldwide. In this study, we investigated automated detection of articles relevant to disease outbreaks using machine learning classifiers. In a real-life setting, it is expensive to prepare a training data set for classifiers, which usually consists of manually labeled relevant and irrelevant articles. To mitigate this challenge, we examined the use of randomly sampled unlabeled articles as well as labeled relevant articles. METHODS Naïve Bayes and Support Vector Machine (SVM) classifiers were trained on 149 relevant and 149 or more randomly sampled unlabeled articles. Diverse classifiers were trained by varying the number of sampled unlabeled articles and also the number of word features. The trained classifiers were applied to 15 thousand articles published over 15 days. Top-ranked articles from each classifier were pooled and the resulting set of 1337 articles was reviewed by an expert analyst to evaluate the classifiers. RESULTS Daily averages of areas under ROC curves (AUCs) over the 15-day evaluation period were 0.841 and 0.836, respectively, for the naïve Bayes and SVM classifier. We referenced a database of disease outbreak reports to confirm that this evaluation data set resulted from the pooling method indeed covered incidents recorded in the database during the evaluation period. CONCLUSIONS The proposed text classification framework utilizing randomly sampled unlabeled articles can facilitate a cost-effective approach to training machine learning classifiers in a real-life Internet-based biosurveillance project. We plan to examine this framework further using larger data sets and using articles in non-English languages.


Journal of the American Medical Informatics Association | 2006

Quantitative Assessment of Dictionary-based Protein Named Entity Tagging

Hongfang Liu; Zhang-Zhi Hu; Manabu Torii; Cathy H. Wu; Carol Friedman

OBJECTIVE Natural language processing (NLP) approaches have been explored to manage and mine information recorded in biological literature. A critical step for biological literature mining is biological named entity tagging (BNET) that identifies names mentioned in text and normalizes them with entries in biological databases. The aim of this study was to provide quantitative assessment of the complexity of BNET on protein entities through BioThesaurus, a thesaurus of gene/protein names for UniProt knowledgebase (UniProtKB) entries that was acquired using online resources. METHODS We evaluated the complexity through several perspectives: ambiguity (i.e., the number of genes/proteins represented by one name), synonymy (i.e., the number of names associated with the same gene/protein), and coverage (i.e., the percentage of gene/protein names in text included in the thesaurus). We also normalized names in BioThesaurus and measures were obtained twice, once before normalization and once after. RESULTS The current version of BioThesaurus has over 2.6 million names or 2.1 million normalized names covering more than 1.8 million UniProtKB entries. The average synonymy is 3.53 (2.86 after normalization), ambiguity is 2.31 before normalization and 2.32 after, while the coverage is 94.0% based on the BioCreAtive data set comprising MEDLINE abstracts containing genes/proteins. CONCLUSION The study indicated that names for genes/proteins are highly ambiguous and there are usually multiple names for the same gene or protein. It also demonstrated that most gene/protein names appearing in text can be found in BioThesaurus.

Collaboration


Dive into the Manabu Torii's collaboration.

Top Co-Authors

Avatar

Hongfang Liu

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Cathy H. Wu

University of Delaware

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhang-Zhi Hu

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kavishwar B. Wagholikar

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Hartley

Georgetown University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Noele P. Nelson

Georgetown University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge