Manaf Bouchentouf
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manaf Bouchentouf.
American Journal of Respiratory and Critical Care Medicine | 2009
Timothy van Haaften; Roisin Byrne; Sébastien Bonnet; Gael Rochefort; John Akabutu; Manaf Bouchentouf; G Rey-Parra; Jacques Galipeau; Alois Haromy; Farah Eaton; Ming Chen; Kyoko Hashimoto; Doris Abley; Greg Korbutt; Stephen L. Archer; Bernard Thébaud
RATIONALE Bronchopulmonary dysplasia (BPD) and emphysema are characterized by arrested alveolar development or loss of alveoli; both are significant global health problems and currently lack effective therapy. Bone marrow-derived mesenchymal stem cells (BMSCs) prevent adult lung injury, but their therapeutic potential in neonatal lung disease is unknown. OBJECTIVES We hypothesized that intratracheal delivery of BMSCs would prevent alveolar destruction in experimental BPD. METHODS In vitro, BMSC differentiation and migration were assessed using co-culture assays and a modified Boyden chamber. In vivo, the therapeutic potential of BMSCs was assessed in a chronic hyperoxia-induced model of BPD in newborn rats. MEASUREMENTS AND MAIN RESULTS In vitro, BMSCs developed immunophenotypic and ultrastructural characteristics of type II alveolar epithelial cells (AEC2) (surfactant protein C expression and lamellar bodies) when co-cultured with lung tissue, but not with culture medium alone or liver. Migration assays revealed preferential attraction of BMSCs toward oxygen-damaged lung versus normal lung. In vivo, chronic hyperoxia in newborn rats led to air space enlargement and loss of lung capillaries, and this was associated with a decrease in circulating and resident lung BMSCs. Intratracheal delivery of BMSCs on Postnatal Day 4 improved survival and exercise tolerance while attenuating alveolar and lung vascular injury and pulmonary hypertension. Engrafted BMSCs coexpressed the AEC2-specific marker surfactant protein C. However, engraftment was disproportionately low for cell replacement to account for the therapeutic benefit, suggesting a paracrine-mediated mechanism. In vitro, BMSC-derived conditioned medium prevented O(2)-induced AEC2 apoptosis, accelerated AEC2 wound healing, and enhanced endothelial cord formation. CONCLUSIONS BMSCs prevent arrested alveolar and vascular growth in part through paracrine activity. Stem cell-based therapies may offer new therapeutic avenues for lung diseases that currently lack efficient treatments.
Journal of Immunology | 2009
Raphaëlle Romieu-Mourez; Moïra François; Marie-Noëlle Boivin; Manaf Bouchentouf; David Spaner; Jacques Galipeau
Bone marrow-derived mesenchymal stromal cells (MSC) possess an immune plasticity manifested by either an immunosuppressive or, when activated with IFN-γ, an APC phenotype. Herein, TLR expression by MSC and their immune regulatory role were investigated. We observed that human MSC and macrophages expressed TLR3 and TLR4 at comparable levels and TLR-mediated activation of MSC resulted in the production of inflammatory mediators such as IL-1β, IL-6, IL-8/CXCL8, and CCL5. IFN-α or IFN-γ priming up-regulated production of these inflammatory mediators and expression of IFNB, inducible NO synthase (iNOS), and TRAIL upon TLR activation in MSC and macrophages, but failed to induce IL-12 and TNF-α production in MSC. Nonetheless, TLR activation in MSC resulted in the formation of an inflammatory site attracting innate immune cells, as evaluated by human neutrophil chemotaxis assays and by the analysis of immune effectors retrieved from Matrigel-embedded MSC injected into mice after in vitro preactivation with cytokines and/or TLR ligands. Hence, TLR-activated MSC are capable of recruiting immune inflammatory cells. In addition, IFN priming combined with TLR activation may increase immune responses induced by Ag-presenting MSC through presentation of Ag in an inflammatory context, a mechanism that could be applied in a cell-based vaccine.
Neurourology and Urodynamics | 2011
Jacques Corcos; Oleg Loutochin; Lysanne Campeau; Nicoletta Eliopoulos; Manaf Bouchentouf; Bertil Blok; Jacques Galipeau
To assess the effect of intra‐sphincteric injections of bone marrow mesenchymal stromal cells (MSCs) on Valsalva leak point pressure (VLPP) changes in an animal model of stress urinary incontinence (SUI).
American Journal of Physiology-renal Physiology | 2010
Nicoletta Eliopoulos; Jing Zhao; Manaf Bouchentouf; Kathy Forner; Elena Birman; Shala Yuan; Marie-Noëlle Boivin; Daniel Martineau
Acute kidney injury (AKI) can occur from the toxic side-effects of chemotherapeutic agents such as cisplatin. Bone marrow-derived mesenchymal stromal cells (MSCs) have demonstrated wide therapeutic potential often due to beneficial factors they secrete. The goal of this investigation was to evaluate in vitro the effect of human MSCs (hMSCs) secretome on cisplatin-treated human kidney cells, and in vivo the consequence of hMSCs intraperitoneal (ip) implantation in mice with AKI. Our results revealed that hMSCs-conditioned media improved survival of HK-2 human proximal tubular cells exposed to cisplatin in vitro. This enhanced survival was linked to increased expression of phosphorylated Akt (Ser473) and was reduced by a VEGF-neutralizing antibody. In vivo testing of these hMSCs established that ip administration in NOD-SCID mice decreased cisplatin-induced kidney function impairment, as demonstrated by lower blood urea nitrogen levels and higher survival. In addition, blood phosphorous and amylase levels were also significantly decreased. Moreover, hMSCs reduced the plasma levels of several inflammatory cytokines/chemokines. Immunohistochemical examination of kidneys showed less apoptotic and more proliferating cells. Furthermore, PCR indicated the presence of hMSCs in mouse kidneys, which also showed enhanced expression of phosphorylated Akt. In conclusion, our study reveals that hMSCs can exert prosurvival effects on renal cells in vitro and in vivo, suggests a paracrine contribution for kidney protective abilities of hMSCs delivered ip, and supports their clinical potential in AKI.
Cell Transplantation | 2010
Manaf Bouchentouf; Pierre Paradis; Kathy-Ann Forner; Jessica Cuerquis; M. N. Boivin; J. Zheng; Mohamed Rachid Boulassel; Jean-Pierre Routy; Ernesto L. Schiffrin; J. Galipeau
In this study, we have investigated the hypothesis that previously reported beneficial effect of peripheral blood mononuclear cells cultured under angiogenic conditions on cardiovascular function following ischemia is not limited to EPCs but also to monocytes contained therein. We first purified and analyzed the phenotype and secretome of human and murine blood monocytes cultured under angiogenic conditions (named MDs for monocyte derivatives) and tested their effect in a mouse model of myocardial infarction (MI). FACS analysis of MDs shows that these cells express mature endothelial cell markers and that their proliferative capacity is virtually absent, consistent with their end-differentiated monocytic ontogeny. MDs secreted significant levels of HGF, IGF-1, MCP-1, and sTNFR-1 relative to their monocyte precursors. MDs were unable to form vascular networks in vitro when cultured on matrix coated flasks. Treatment of murine HL-1 cardiomyocyte cell line with MD-conditioned medium reduced their death induced by TNF-α, staurosporine, and oxidative stress, and this effect was dependent upon MD-derived sTNFR-1, HGF, and IGF-1. We further demonstrate that MD secretome promoted endothelial cell proliferation and capacity to form vessels in vitro and this was dependent upon MD-derived MCP-1, HGF, and IGF-1. Echocardiography analysis showed that MD myocardial implantation improved left ventricle fractional shortening of mouse hearts following MI and was associated with reduced myocardial fibrosis and enhancement of angiogenesis. Transplanted MDs and their secretome participate in preserving functional myocardium after ischemic insult and attenuate pathological remodeling.
Molecular Therapy | 2011
Nicoletta Eliopoulos; Jing Zhao; Kathy Forner; Elena Birman; Yoon Kow Young; Manaf Bouchentouf
Bone marrow-derived mesenchymal stromal cells (MSCs) are promising for regenerative medicine applications, such as for renoprotection and repair in acute kidney injury (AKI). Erythropoietin (Epo) can also exert cytoprotective effects on various tissues including the kidney. We hypothesized that MSCs gene-enhanced to secrete Epo may produce a significant beneficial effect in AKI. Mouse Epo-secreting MSCs were generated, tested in vitro, and then implanted by intraperitoneal injection in allogeneic mice previously administered cisplatin to induce AKI. Epo-MSCs significantly improved survival of implanted mice as compared to controls (67% survival versus 33% with Vehicle only). Also, Epo-MSCs led to significantly better kidney function as shown by lower levels of blood urea nitrogen (72 ± 9.5 mg/dl versus 131 ± 9.20 mg/dl) and creatinine (74 ± 17 µmol/l versus 148±19.4 µmol/l). Recipient mice also showed significantly decreased amylase and alanine aminotransferase blood concentrations. Kidney sections revealed significantly less apoptotic cells and more proliferating cells. Furthermore, PCR revealed the presence of implanted cells in recipient kidneys, with Epo-MSCs leading to significantly increased expression of Epo and of phosphorylated-Akt (Ser473) (P-Akt) in these kidneys. In conclusion, our study demonstrates that Epo gene-enhanced MSCs exert significant tissue protective effects in allogeneic mice with AKI, and supports the potential use of gene-enhanced cells as universal donors in acute injury.
Journal of Immunology | 2011
Claudia Penafuerte; Norma Bautista-Lopez; Manaf Bouchentouf; Elena Birman; Kathy Forner; Jacques Galipeau
Carcinoma derived TGF-β acts as a potent pro-oncogenic factor and suppresses antitumor immunity. To antagonize TGF-β–mediated effects in tandem with a proinflammatory immune stimulus, we generated a chimeric protein borne of the fusion of IL-2 and the soluble extracellular domain of TGF-βR II (FIST). FIST acts as a decoy receptor trapping active TGF-β in solution and interacts with IL-2–responsive lymphoid cells, inducing a distinctive hyperactivation of STAT1 downstream of IL-2R, which in turn promotes SMAD7 overexpression. Consequently, FIST-stimulated lymphoid cells are resistant to TGF-β–mediated suppression and produce significant amounts of proinflammatory cytokines. STAT1 hyperactivation further induces significant secretion of angiostatic CXCL10. Moreover, FIST upregulates T-bet expression in NK cells promoting a potent Th1-mediated antitumor response. As a result, FIST stimulation completely inhibits pancreatic cancer (PANC02) and melanoma (B16) tumor growth in immunocompetent C57BL/6 mice. In addition, melanoma cells expressing FIST fail to form tumors in CD8−/−, CD4−/−, B cell-deficient (μMT), and beige mice, but not in NOD-SCID and Rag2/γc knockout mice, consistent with the pivotal role of FIST-responsive, cancer-killing NK cells in vivo. In summary, FIST constitutes a novel strategy of treating cancer that targets both the host’s angiogenic and innate immune response to malignant cells.
Molecular Therapy | 2010
Patrick Williams; Moutih Rafei; Manaf Bouchentouf; Jennifer F. Raven; Shala Yuan; Jessica Cuerquis; Kathy Forner; Elena Birman; Jacques Galipeau
We hypothesized that fusing granulocyte-macrophage colony-stimulation factor (GMCSF) and interleukin (IL)-21 as a single bifunctional cytokine (hereafter GIFT-21) would lead to synergistic anticancer immune effects because of their respective roles in mediating inflammation. Mechanistic analysis of GIFT-21 found that it leads to IL-21Rα-dependent STAT3 hyperactivation while also contemporaneously behaving as a dominant-negative inhibitor of GMCSF-driven STAT5 activation. GIFT-21s aberrant interactions with its cognate receptors on macrophages resulted in production of 30-fold greater amounts of IL-6, TNF-α, and MCP-1 when compared to controls. Furthermore, GIFT-21 treatment of primary B and T lymphocytes leads to STAT1-dependent apoptosis of IL-21Rα+ lymphocytes. B16 melanoma cells gene-enhanced to produce GIFT-21 were immune rejected by syngeneic C57Bl/6 mice comparable to the effect of IL-21 alone. However, a significant GIFT-21-driven survival advantage was seen when NOD-SCID mice were implanted with GIFT-21-secreting B16 cells, consistent with a meaningful role of macrophages in tumor rejection. Because GIFT-21 leads to apoptosis of IL-21Rα+ lymphocytes, we tested its cytolytic effect on IL-21Rα+ EL-4 lymphoma tumors implanted in C57Bl/6 mice and could demonstrate a significant increase in survival. These data indicate that GIFT-21 is a novel IL-21Rα agonist that co-opts IL-21Rα-dependent signaling in a manner permissive for targeted cancer immunotherapy.We hypothesized that fusing granulocyte-macrophage colony-stimulation factor (GMCSF) and interleukin (IL)-21 as a single bifunctional cytokine (hereafter GIFT-21) would lead to synergistic anticancer immune effects because of their respective roles in mediating inflammation. Mechanistic analysis of GIFT-21 found that it leads to IL-21Ralpha-dependent STAT3 hyperactivation while also contemporaneously behaving as a dominant-negative inhibitor of GMCSF-driven STAT5 activation. GIFT-21s aberrant interactions with its cognate receptors on macrophages resulted in production of 30-fold greater amounts of IL-6, TNF-alpha, and MCP-1 when compared to controls. Furthermore, GIFT-21 treatment of primary B and T lymphocytes leads to STAT1-dependent apoptosis of IL-21Ralpha(+) lymphocytes. B16 melanoma cells gene-enhanced to produce GIFT-21 were immune rejected by syngeneic C57Bl/6 mice comparable to the effect of IL-21 alone. However, a significant GIFT-21-driven survival advantage was seen when NOD-SCID mice were implanted with GIFT-21-secreting B16 cells, consistent with a meaningful role of macrophages in tumor rejection. Because GIFT-21 leads to apoptosis of IL-21Ralpha(+) lymphocytes, we tested its cytolytic effect on IL-21Ralpha(+) EL-4 lymphoma tumors implanted in C57Bl/6 mice and could demonstrate a significant increase in survival. These data indicate that GIFT-21 is a novel IL-21Ralpha agonist that co-opts IL-21Ralpha-dependent signaling in a manner permissive for targeted cancer immunotherapy.
Journal of Immunology | 2010
Manaf Bouchentouf; Kathy-Ann Forner; Jessica Cuerquis; Véronique Michaud; Jiamin Zheng; Pierre Paradis; Ernesto L. Schiffrin; Jacques Galipeau
Recent findings indicate that NK cells are involved in cardiac repair following myocardial infarction. The aim of this study is to investigate the role NK cells in infarct angiogenesis and cardiac remodeling. In normal C57BL/6 mice, myelomonocytic inflammatory cells invaded infarcted heart within 24 h followed by a lymphoid/NK cell infiltrate by day 6, accompanied by substantial expression of IL-2, TNF-α, and CCL2. In contrast, NOD SCID mice had virtually no lymphoid cells infiltrating the heart and did not upregulate IL-2 levels. In vitro and in vivo, IL-2–activated NK cells promoted TNF-α–stimulated endothelial cell proliferation, enhanced angiogenesis and reduced fibrosis within the infarcted myocardium. Adoptive transfer of IL-2–activated NK cells to NOD SCID mice improved post-myocardial infarction angiogenesis. RNA silencing technology and neutralizing Abs demonstrated that this process involved α4β7 integrin/VCAM-1 and killer cell lectin-like receptor 1/N-cadherin–specific binding. In this study, we show that IL-2–activated NK cells reduce myocardial collagen deposition along with an increase in neovascularization following acute cardiac ischemia through specific interaction with endothelial cells. These data define a potential role of activated NK cells in cardiac angiogenesis and open new perspectives for the treatment of ischemic diseases.
Cell Transplantation | 2011
Manaf Bouchentouf; Kathy-Ann Forner; Jessica Cuerquis; Mohamed Rachid Boulassel; Jean-Pierre Routy; E. K. Waller; A. A. Quyyumi; Pierre Paradis; Ernesto L. Schiffrin; Jacques Galipeau
Endothelial progenitor cells (EPCs) consist of two different subpopulations named early (eEPCs) and late EPCs (lEPCs) that are derived from CD14+ and CD14- circulating cells, respectively. These cells are regularly cultured over fibronectin-coated surfaces in endothelial basal medium (EBM)-2 supplemented with insulin-like growth factor (IGF-1), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and fibroblast growth factor (FGF). We have developed a new and simplified method for culturing human EPCs obtained from peripheral blood and tested their ability to preserve cardiac function following infarction. We first demonstrated that eEPCs derived from human peripheral blood mononuclear cells (PBMCs) and cultured in EBM-2 medium supplemented with autologous serum (10%) over fibronectin-coated surfaces (10 μg/ml) in the presence of IGF-1 (50 ng/ml) only, have a secretome similar to eEPCs cultured under regular conditions with IGF-1, VEGF, EGF, and FGF. Our data also indicate that IGF-1 modulates PBMC secretome in a dose-dependent manner. In another series of experiments, we showed that PBMCs cultured in suspension in bags (S-PBMCs) in basal medium supplemented with fibronectin and IGF-1 secrete significant amounts of stem cell factor (SCF, 31.3 ± 3.1 pg/ml)), hepatocyte growth factor (HGF, 438.6 ± 41.4 pg/ml), soluble tumor necrosis factor receptor 1 (sTNFR1, 127.1 ± 9.9 pg/ml), VEGF (139.3 ± 9.6 pg/ml), and IGF-1 (147.2 ± 46.1 pg/ml) but very low levels of TNF-α (13.4 ± 2.5 pg/ml). S-PBMCs injected intravenously into NOD SCID mice migrated to the injured myocardium, reduced cardiac fibrosis, enhanced angiogenesis, and preserved cardiac function after myocardial infarction (MI) in a manner similar to eEPCs cultured under standard conditions. In conclusion, we show in this study a refined and optimized method for culturing eEPCs. Our data indicate that S-PBMCs are composed of several cell populations including eEPCs and that they secrete high amounts of antiapoptotic, anti-inflammatory, and proangiogenic factors capable of preserving cardiac function following MI.