Manal Ismail
National University of Malaysia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manal Ismail.
Bioresource Technology | 2012
Zahira Yaakob; Irwan Sukma Bin Sukarman; Binitha N. Narayanan; Siti Rozaimah Sheikh Abdullah; Manal Ismail
Transesterification reaction of Jatropha curcas oil with methanol was carried out in the presence of ash generated from Palm empty fruit bunch (EFB) in a heterogeneous catalyzed process. The ash was doped with KOH by impregnation to achieve a potassium level of 20 wt.%. Under optimum conditions for the EFB-catalyzed (65 °C, oil/methanol ratio of 15, 90 min, 20 wt.% EFB ash catalyst) and the KOH-EFB-catalyzed reactions (65 °C, oil/methanol ratio of 15, 45 min, 15 wt.% of KOH doped EFB ash), biodiesel (>98%) with specifications higher than those stipulated by European biodiesel quality standard EN 14214 was obtained.
Chemical Papers | 2012
Wan Nor Roslam Wan Isahak; Manal Ismail; Jamaliah Md Jahim; Jumat Salimon; Mohd Ambar Yarmo
In this work, the performance of three heterogeneous catalysts, namely potassium hydroxide/γ-alumina, bulk calcium oxide, and nano-calcium oxide, in comparison with the homogeneous potassium hydroxide was studied in the transesterification of palm oil to produce methyl esters and glycerol. The physical and chemical properties of the heterogeneous catalysts were thoroughly characterised and determined using a number of analytical methods to assess their catalytic activities prior to transesterification. The reaction products were analysed using liquid chromatography and their properties were quantified based on the American Society of Testing and Materials and United State Pharmacopoeia standard methods. At the 65°C reaction temperature, the oil-to-methanol mole ratio of 1: 15, 2.5 h of the reaction time, and catalyst (φr = 1: 40), potassium hydroxide, potassium hydroxide/γ-alumina, nano-calcium oxide, and bulk calcium oxide gave methyl ester yields of 97 %, 96 %, 94 %, and 90 %, respectively. The impregnation of γ-alumina with potassium hydroxide displayed a catalytic performance comparable with the performance of potassium hydroxide where the former could be physically separated via filtration resulting in a relatively greater purity of products. Other advantages included the longer reusability of the catalyst and more active sites with lower by-product formation.
Separation and Purification Reviews | 2015
Wan Nor Roslam Wan Isahak; Zatil Amali Che Ramli; Manal Ismail; Jamaliah Mohd Jahim; Mohd Ambar Yarmo
This article reviews the purification techniques involved in producing high-purity glycerol in the biodiesel industry. Utilization of glycerol by-products (contains less than 50 wt.% of glycerol and the remaining contents are water, salts, unreacted alcohol and catalyst) in biodiesel production affords greener and less costly processes. Research has focused on several purification steps that are capable of producing high-purity glycerol. Various new techniques for purifying glycerol promise better quality and lower cost and technologies are required to fulfil increasing worldwide demand. Neutralization, ultrafiltration, the use of ion exchange resins, vacuum distillation and other methods have been utilized in single or multiple stages. Recent studies have demonstrated that the combination of more than one technique produces high-purity glycerol (>99.2%). Purifications cost can be as low as 0.149 USD
Chemical Papers | 2013
Lukman Hakim; Zahira Yaakob; Manal Ismail; Wan Ramli Wan Daud; Ratna Sari
/kg. For many applications, high-purity glycerol is more useful. In some cases, it is even necessary, particularly in the fields of hydrogen production, methanol production, pharmaceuticals and food additives.
Advanced Materials Research | 2012
Wan Nor Roslam Wan Isahak; Manal Ismail; Norasikin Mohd Nordin; Nadia Farhana Adnan; Jamaliah Mohd Jahim; Jumat Salimon; Mohd Ambar Yarmo
Hydroxyapatite-supported Ni-Ce-Cu catalysts were synthesised and tested to study their potential for use in the steam reforming of glycerol to produce hydrogen. The catalysts were prepared by the deposition-precipitation method with variable nickel, cerium, and copper loadings. The performance of the catalysts was evaluated in terms of hydrogen yield at 600°C in a tubular fixed-bed microreactor. All catalysts were characterised by the BET surface area, XRD, TPR, TEM, and FE-SEM techniques. The reaction time was 240 min in a fixed-bed reactor at 600°C and atmospheric pressure with a water-to-glycerol feed molar ratio of 8: 1. It was found that the Ni-Ce-Cu (3 mass %-7.5 mass %-7.5 mass %) hydroxyapatite-supported catalyst afforded the highest hydrogen yield (57.5 %), with a glycerol conversion rate of 97.3 %. The results indicate that Ni/Ce/Cu/hydroxyapatite has great potential as a catalyst for hydrogen production by steam reforming of glycerol.
Advanced Materials Research | 2011
Wan Nor Roslam Wan Isahak; Manal Ismail; Norasikin Mohd Nordin; Noraini Hamzah; Khadijeh Beigom Ghoreishi; Jamaliah Md Jahim; Mohd Ambar Yarmo
In this work, we were study the selective synthesis of GME from oleic acid and glycerol using two types of solid heteropoly acid catalysts, namely silicotungstic acid bulk (STAB) and STA-silica sol gel (STA-SG). The performance and selectivity of STAB and STA-SG in the esterification reaction have been investigated and compared to the sulphuric acid (H2SO4) as conventional homogeneous catalyst. The catalysts were then characterized their physical and chemical properties using BET, XRD, TEM and XPS. XPS analyses were shown a significant formation of W-O-Si, W-O-W and Si-O-Si bonding in STA-SG compared to that in STAB. The main spectra of O1s (90.74 %, 531.5 eV) followed by other O1s peak (9.26 %, 532.8 eV) were due to the presence of W-O-W and W-O-Si bonds, respectively. The STA-SG catalyst was found to be the more environmentally benign solid acid catalyst for the esterification reaction between oleic acid and glycerol due to its lower toxicity in terms of the relatively lower pH value (pH 3.7) than the STAB (pH 2.8). In addition, the ease of separation for STA-SG catalyst was attributed to its insoluble state in the product phase. The esterification products were then analysed by FTIR and HPLC. Both the H2SO4 and the STAB gave high conversion of 100 % and 98 %, but at a lower selectivity of GME with 81.6% and 89.9%, respectively. On the contrary, the STA-SG enabled a conversion of 94 %, but with a significantly higher GME selectivity of 95 % rendering it the more efficient solid acid catalyst.
2011 IEEE Conference on Clean Energy and Technology (CET) | 2011
Wan Ramli Wan Daud; Mostafa Ghasemi; Poh She Chong; Jamaliah Md Jahim; Swee Su Lim; Manal Ismail
Glycerol monooleate (GMO) as an esterification product of oleic acid and glycerol is highly potential as an anti-friction substance in the engine lubricant. The purpose of this work is to study the synthesis, characterization and catalytic performance of solid heteropoly acid catalysts, namely silicotungstic acid bulk (STAB) and STA-silica sol gel (STA-SG). The activity and selectivity of STAB and STA-SG in the esterification reaction have been investigated and compared to the homogeneous catalyst i.e. sulphuric acid (H2SO4). The synthesized catalysts were characterized by BET, XRD, TEM, XPS and TPD-NH3. BET analyses shown that the STA-SG catalyst is very high in surface area compared to STAB of 460.11 m2/g and 0.98 m2/g, respectively. From the XPS analyses, there was a significant formation of W-O-Si, W-O-W and Si-O-Si bonding in STA-SG compared to that in STAB. The main species of O1s (90.74 %, 531.5 eV) followed by other O1s peak (9.26 %, 532.8 eV) were due to the presence of W-O-W and W-O-Si bonds, respectively. In addition, the ease of separation for STA-SG catalyst was attributed to its insoluble state in the product phase. The esterification products were then analysed by FTIR and HPLC. Both the H2SO4 and the STAB gave high conversion of 100% and 98%, while lower selectivity of GME with 81.6% and 89.9%, respectively. On the contrary, the STA-SG enabled a conversion of 94%, while significantly higher GME selectivity of 95% rendering it the more efficient solid acid catalyst.
IOP Conference Series: Materials Science and Engineering | 2017
Nurul Fitriah Nasir; M F Mirus; Manal Ismail
A solid polymer electrolyte (SPE) membranes were synthesized by incorporation of sulfonated poly(ether ether ketone) (SPEEK) in poly(ether sulfone) (PES) for electricity generation in microbial fuel cells (MFC). The composite membranes were prepared at 5% percent weight of SPEEK mixed with PES by phase inversion method and characterized by measuring proton conductivity, oxygen diffusion, water crossover and level of biofouling. Membrane electrode assemblies (MEA) were made by hot pressing the composite membranes with a Pt-loaded cathode on one side of membranes. The MEA, with effective area of 9 cm2, were tested using single chamber MFC. The blended SPEEK/PES membrane had low resistivity to water crossover and oxygen diffusion while high in conductivity compared to Nafion and PES membranes. The MFC using the composite membranes generated an average power density of 140 mW m−2 which was double that produced by MFC using Nafion membranes in every fed-batch cycle which lasted for 24 hours. The experimental results suggested that SPEEK/PES composite membrane could be a promising alternative to costly perfluorosulfonate membranes as proton exchange membrane in MFC system.
European journal of scientific research | 2009
Emil Akbar; Zahira Yaakob; S.K. Kamarudin; Manal Ismail; Jumat Salimon
Crude glycerol which produced from transesterification reaction has limited usage if it does not undergo purification process. It also contains excess methanol, catalyst and soap. Conventionally, purification method of the crude glycerol involves high cost and complex processes. This study aimed to determine the effects of using different purification methods which are direct method (comprises of ion exchange and methanol removal steps) and multistep method (comprises of neutralization, filtration, ion exchange and methanol removal steps). Two crude glycerol samples were investigated; the self-produced sample through the transesterification process of palm oil and the sample obtained from biodiesel plant. Samples were analysed using Fourier Transform Infrared Spectroscopy, Gas Chromatography and High Performance Liquid Chromatography. The results of this study for both samples after purification have showed that the pure glycerol was successfully produced and fatty acid salts were eliminated. Also, the results indicated the absence of methanol in both samples after purification process. In short, the combination of 4 purification steps has contributed to a higher quality of glycerol. Multistep purification method gave a better result compared to the direct method as neutralization and filtration steps helped in removing most excess salt, fatty acid and catalyst.
International Journal of Hydrogen Energy | 2014
Kien Ben Liew; Wan Ramli Wan Daud; Mostafa Ghasemi; Jun Xing Leong; Swee Su Lim; Manal Ismail