Manas K. Majumdar
Osiris Therapeutics, Inc.
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manas K. Majumdar.
Journal of Cellular Physiology | 1998
Manas K. Majumdar; Mark A. Thiede; Joseph D. Mosca; Mark Aaron Moorman; Stanton L. Gerson
Mesenchymal stem cells (MSCs) are a population of pluripotent cells within the bone marrow microenvironment defined by their ability to differentiate into cells of the osteogenic, chondrogenic, tendonogenic, adipogenic, and myogenic lineages. We have developed methodologies to isolate and culture‐expand MSCs from human bone marrow, and in this study, we examined the MSCs role as a stromal cell precursor capable of supporting hematopoietic differentiation in vitro. We examined the morphology, phenotype, and in vitro function of cultures of MSCs and traditional marrow‐derived stromal cells (MDSCs) from the same marrow sample. MSCs are morphologically distinct from MDSC cultures, and flow cytometric analyses show that MSCs are a homogeneous cell population devoid of hematopoietic cells. RT‐PCR analysis of cytokine and growth factor mRNA in MSCs and MDSCs revealed a very similar pattern of mRNAs including IL‐6, ‐7, ‐8, ‐11, ‐12, ‐14, and ‐15, M‐CSF, Flt‐3 ligand, and SCF. Steady‐state levels of IL‐11 and IL‐12 mRNA were found to be greater in MSCs. Addition of IL‐1α induced steady‐state levels of G‐CSF and GM‐CSF mRNA in both cell preparations. In contrast, IL‐1α induced IL‐1α and LIF mRNA levels only in MSCs, further emphasizing phenotypic differences between MSCs and MDSCs. In long‐term bone marrow culture (LTBMC), MSCs maintained the hematopoietic differentiation of CD34+ hematopoietic progenitor cells. Together, these data suggest that MSCs represent an important cellular component of the bone marrow microenvironment. J. Cell. Physiol. 176:57–66, 1998.
Journal of Biomedical Science | 2003
Manas K. Majumdar; Michele Keane-Moore; Diana Buyaner; Wayne Hardy; Mark Aaron Moorman; Kevin R. Mcintosh; Joseph D. Mosca
We have characterized adhesion molecules on the surface of multipotential human mesenchymal stem cells (hMSCs) and identified molecules whose ligands are present on mature hematopoietic cells. Flow cytometric analysis of hMSCs identified the expression of integrins: alpha1, alpha2, alpha3, alpha5, alpha6, alphav, beta1, beta3, and beta4, in addition to ICAM-1, ICAM-2, VCAM-1, CD72, and LFA-3. Exposure of hMSCs to IL-1alpha, TNFalpha or IFNgamma up-modulated ICAM-1 surface expression, whereas only IFNgamma increased both HLA-class I and -class II molecules on the cell surface. Whole cell-binding assays between the hMSCs and hematopoietic cell lines showed that T lymphocytic lines bound hMSCs with higher affinity than lines of either B lymphocytes or those of myeloid lineage. Experiments using autologous T lymphocytes isolated from peripheral blood mononuclear cells showed that hMSCs exhibited increased affinity for activated T-lymphocytes compared to resting T cells by quantitative whole cell binding and rosetting assays. Flow cytometric analysis of rosetted cells demonstrated that both CD4+ and CD8+ cells bound to hMSCs. To determine the functional significance of these findings, we tested the ability of hMSCs to present antigen to T lymphocytes. hMSCs pulsed with tetanus toxoid stimulated proliferation and cytokine production (IL-4, IL-10, and IFNgamma) in a tetanus-toxoid-specific T cell line. Maximal cytokine production correlated with maximal antigen-dependent proliferation. These data demonstrate physiological outcome as a consequence of interactions between hMSCs and human hematopoietic lineage cells, suggesting a role for hMSCs in vivo to influence both hematopoietic and immune function(s).
Journal of Hematotherapy & Stem Cell Research | 2000
Manas K. Majumdar; Mark A. Thiede; Stephen E. Haynesworth; Scott P. Bruder; Stanton L. Gerson
Human mesenchymal stem cells (MSCs), bone marrow-derived pluripotent adherent cells of mesenchymal origin can differentiate along the osteogenic, chondrogenic, adipogenic, and tendonogenic lineages. In this report we characterize cytokine and growth factor gene expression by MSCs and investigate the modulation of cytokine expression that occurs during osteogenic and stromal differentiation. MSCs constitutively expressed mRNA for interleukin (IL)-6, IL-11, leukemia inhibitory factor (LIF), macrophage colony-stimulating factor (M-CSF), and stem cell factor (SCF). MSCs treated with IL-1alpha upregulated mRNA levels of IL-6, IL-11, and LIF, and began to express detectable levels of granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF). mRNA levels of M-CSF and SCF did not change. MSCs cultured in osteogenic medium differentiated along the osteogenic lineage and downregulated mRNA levels of IL-6, IL-11 and LIF whereas, M-CSF and SCF expression were unchanged and G-CSF and GM-CSF remained undetectable. IL-3 was not detected in MSC culture under any conditions. MSCs precultured in control medium, IL-1alpha, or osteogenic medium maintained similar capacity to support long-term culture initiating cell (LT-CIC). Thus, primary and osteogenic differentiated MSCs produce important hematopoietic cytokines and support hematopoiesis in long-term cultures, suggesting that these cells may provide an excellent ex vivo environment for hematopoiesis during progenitor cell expansion and may be important for in vivo cell therapy.
Journal of Biological Chemistry | 2006
Edward R. Lavallie; Priya S. Chockalingam; Lisa A. Collins-Racie; Bethany A. Freeman; Cristin Keohan; Michael Leitges; Andrew J. Dorner; Elisabeth A. Morris; Manas K. Majumdar; Maya Arai
Protein kinase Cζ (PKCζ) is an intracellular serine/threonine protein kinase that has been implicated in the signaling pathways for certain inflammatory cytokines, including interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α), in some cell types. A study of gene expression in articular chondrocytes from osteoarthritis (OA) patients revealed that PKCζ is transcriptionally up-regulated in human OA articular cartilage clinical samples. This finding led to the hypothesis that PKCζ may be an important signaling component of cytokine-mediated cartilage matrix destruction in articular chondrocytes, believed to be an underlying factor in the pathophysiology of OA. IL-1 treatment of chondrocytes in culture resulted in rapidly increased phosphorylation of PKCζ, implicating PKCζ activation in the signaling pathway. Chondrocyte cell-based assays were used to evaluate the contribution of PKCζ activity in NF-κB activation and extracellular matrix degradation mediated by IL-1, TNF, or sphingomyelinase. In primary chondrocytes, IL-1 and TNF-α caused an increase in NF-κB activity resulting in induction of aggrecanase-1 and aggrecanase-2 expression, with consequent increased proteoglycan degradation. This effect was blocked by the pan-specific PKC inhibitors RO 31-8220 and bisindolylmaleimide I, partially blocked by Gö 6976, and was unaffected by the PKCζ-sparing inhibitor calphostin C. A cell-permeable PKCζ pseudosubstrate peptide inhibitor was capable of blocking TNFand IL-1-mediated NF-κB activation and proteoglycan degradation in chondrocyte pellet cultures. In addition, overexpression of a dominant negative PKCζ protein effectively prevented cytokine-mediated NF-κB activation in primary chondrocytes. These data implicate PKCζ as a necessary component of the IL-1 and TNF signaling pathways in chondrocytes that result in catabolic destruction of extracellular matrix proteins in osteoarthritic cartilage.
Bioorganic & Medicinal Chemistry Letters | 2009
Darrin William Hopper; Matthew D. Vera; David Brian How; Joshua James Sabatini; Jason Shaoyun Xiang; Manus Ipek; Jennifer R. Thomason; Yonghan Hu; Eric Feyfant; Qin Wang; Katy E. Georgiadis; Erica Reifenberg; Richard Sheldon; Cristin Keohan; Manas K. Majumdar; Elisabeth A. Morris; Jerauld S. Skotnicki; Phaik-Eng Sum
The prevention of aggrecan (a key component of cartilage) cleavage via the inhibition of aggrecanase-1 may provide a unique opportunity to stop the progression of cartilage degradation in osteoarthritis. The evaluation of a series of biphenylsulfonamides resulted in the identification of the ((4-keto)-phenoxy)methyl biphenyl-4-sulfonamides analogs (19-21 and 24) with improved Agg-1 inhibition and MMP-2, MMP-13 activity.
Journal of Cellular Physiology | 2006
Manas K. Majumdar; Priya S. Chockalingam; Ramesh A. Bhat; Richard Sheldon; Cristin Keohan; Tracey Blanchet; S.S. Glasson; Elisabeth A. Morris
Chondrocytes are unique to cartilage and the study of these cells in vitro is important for advancing our understanding of the role of these cells in normal homeostasis and disease including osteoarthritis (OA). As there are limitations to the culture of primary chondrocytes, cell lines have been developed to overcome some of these obstacles. In this study, we developed a procedure to immortalize and characterize chondrocyte cell lines from mouse xiphisternum. The cells displayed a polygonal to fibroblastic morphology in monolayer culture. Gene expression studies using quantitative PCR showed that the cell lines responded to bone morphogenetic protein 2 (BMP‐2) by increased expression of matrix molecules, aggrecan, and type II collagen together with transcriptional factor, Sox9. Stimulation by IL‐1 results in the increased expression of catabolic effectors including MMP‐13, nitric oxide synthase, ADAMTS4, and ADAMTS5. Cells cultured in alginate responded to BMP‐2 by increased synthesis of proteoglycan (PG), a major matrix molecule of cartilage. IL‐1 treatment of cells in alginate results in increased release of PG into the conditioned media. Further analysis of the media showed the presence of Aggrecanase‐cleaved aggrecan fragments, a signature of matrix degradation. These results show that the xiphisternum chondrocyte cell lines preserve their chondrocyte phenotype cultured in either monolayer or 3‐dimensional alginate bead culture systems. In summary, this study describes the establishment of chondrocyte cell lines from the mouse xiphisternum that may be useful as a surrogate model system to understand chondrocyte biology and to shed light on the underlying mechanism of pathogenesis in OA. J. Cell. Physiol. 209: 551–559, 2006.
Journal of Biomedical Science | 2005
Elena N. Klyushnenkova; Joseph D. Mosca; Valentina Zernetkina; Manas K. Majumdar; Kirstin J. Beggs; Donald William Jr. Ward Road Simonetti; Robert Deans; Kevin R. Mcintosh
Human Gene Therapy | 1997
James A. Allay; James E. Dennis; Stephen E. Haynesworth; Manas K. Majumdar; D. Wade Clapp; Leonard D. Shultz; Arnold I. Caplan; Stanton L. Gerson
Arthritis & Rheumatism | 2007
Manas K. Majumdar; Roger Askew; Scott H. Schelling; Nancy Stedman; Tracey Blanchet; Bei Hopkins; Elisabeth A. Morris; S.S. Glasson
Molecular Therapy | 2001
Keunmyoung Lee; Manas K. Majumdar; Diana Buyaner; J.Kyle Hendricks; Mark F. Pittenger; Joseph D. Mosca