Manas K. Panda
New York University Abu Dhabi
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manas K. Panda.
Chemical Reviews | 2015
Panče Naumov; Stanislav Chizhik; Manas K. Panda; Naba K. Nath; Elena V. Boldyreva
Pancě Naumov,*,† Stanislav Chizhik,‡,§ Manas K. Panda,† Naba K. Nath,† and Elena Boldyreva*,‡,§ †New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates ‡Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, ul. Kutateladze, 18, Novosibirsk 630128, Russia Novosibirsk State University, ul. Pirogova, 2, Novosibirsk 630090, Russia
Angewandte Chemie | 2013
Sharath Kandambeth; Digambar Balaji Shinde; Manas K. Panda; Binit Lukose; Thomas Heine; Rahul Banerjee
A strong bond: A strategy based on intramolecular hydrogen-binding interactions in 2D covalent organic frameworks (COFs) is shown to improve the crystallinity, porosity, and chemical stability of the material. The concept is validated by removing the hydrogen-bonding interaction in the methoxy analog which showed a lower stability and crystallinity.
CrystEngComm | 2014
Naba K. Nath; Manas K. Panda; Subash Chandra Sahoo; Panče Naumov
The classical perception of single crystals of molecular materials as rigid and brittle entities has downsized the research interest in their mechanical effects that had been initiated and was active back in the 1980s. More recently, the modern analytical techniques for their mechanical, electron-microscopic, structural, spectroscopic and kinematic characterization have contributed to accumulate compelling evidence that under certain circumstances, even some seemingly rigid single crystals can deform, bend, twist, hop, wiggle or perform other ‘acrobatics’ that are atypical for non-soft matter. These examples contribute to a paradigm shift in our understanding of the elasticity of molecular crystals and also provide direct mechanistic insight into the structural perturbations at the limits of the susceptibility of ordered matter to internal and external mechanical forces. As the relevance of motility and reshaping of molecular crystals is being recognized by the crystal research community as a demonstration of a very basic concept—conversion of thermal or light energy into work—a new and exciting crystal chemistry around mechanically responsive single crystals rapidly unfolds.
Nature Chemistry | 2015
Manas K. Panda; Soumyajit Ghosh; Nobuhiro Yasuda; Taro Moriwaki; Goutam Dev Mukherjee; C. Malla Reddy; Panče Naumov
The exceptional mechanical flexibility observed with certain organic crystals defies the common perception of single crystals as brittle objects. Here, we describe the morphostructural consequences of plastic deformation in crystals of hexachlorobenzene that can be bent mechanically at multiple locations to 360° with retention of macroscopic integrity. This extraordinary plasticity proceeds by segregation of the bent section into flexible layers that slide on top of each other, thereby generating domains with slightly different lattice orientations. Microscopic, spectroscopic and diffraction analyses of the bent crystal showed that the preservation of crystal integrity when stress is applied on the (001) face requires sliding of layers by breaking and re-formation of halogen-halogen interactions. Application of stress on the (100) face, in the direction where π···π interactions dominate the packing, leads to immediate crystal disintegration. Within a broader perspective, this study highlights the yet unrecognized extraordinary malleability of molecular crystals with strongly anisotropic supramolecular interactions.
Nature Communications | 2014
Manas K. Panda; Tomče Runčevski; Subash Chandra Sahoo; Alexei A. Belik; Naba K. Nath; Robert E. Dinnebier; Panče Naumov
The thermosalient effect is an extremely rare propensity of certain crystalline solids for self-actuation by elastic deformation or by a ballistic event. Here we present direct evidence for the driving force behind this impressive crystal motility. Crystals of a prototypical thermosalient material, (phenylazophenyl)palladium hexafluoroacetylacetonate, can switch between five crystal structures (α-ε) that are related by four phase transitions including one thermosalient transition (α↔γ). The mechanical effect is driven by a uniaxial negative expansion that is compensated by unusually large positive axial expansion (260 × 10(-6) K(-1)) with volumetric expansion coefficients (≈250 × 10(-6) K(-1)) that are among the highest values reported in molecular solids thus far. The habit plane advances at ~10(4) times the rate observed with non-thermosalient transitions. This rapid expansion of the crystal following the phase switching is the driving force for occurrence of the thermosalient effect.
Journal of Materials Chemistry | 2014
Pradip Pachfule; Manas K. Panda; Sharath Kandambeth; S. M. Shivaprasad; David Díaz Díaz; Rahul Banerjee
Highly dispersed Pd(0) nanoparticles were successfully immobilized into a stable, crystalline and porous covalent organic framework (COF), TpPa-1, by a solution infiltration method using NABH4 as a reducing agent. High resolution and dark field TEM images confirmed the uniform loading of the Pd(0) nanoparticles into the TpPa-1 matrix without aggregation. This hybrid material exhibited excellent catalytic activity towards the Cu free Sonogashira, Heck and sequential one pot Heck–Sonogashira cross-coupling reactions under basic conditions, and with superior performance compared to commercially available Pd supported on activated charcoal (i.e., 1, 5 and 10 wt%). Additionally, the precursor Pd(II)-doped COF also displayed competitive catalytic activity for the intramolecular oxidative biaryl synthesis under acidic conditions. Both catalysts were found to be highly stable under the reaction conditions showing negligible metal leaching, non-sintering behavior, and good recyclability. To the best of our knowledge, the organic support used in this work, TpPa-1, constitutes the first COF matrix that can hold both Pd(0) nanoparticles and Pd(II) complex without aggregation for catalytic purposes under both highly acidic and basic conditions.
Journal of the American Chemical Society | 2013
Subash Chandra Sahoo; Manas K. Panda; Naba K. Nath; Panče Naumov
While self-actuation and motility are habitual for humans and nonsessile animals, they are hardly intuitive for simple, lifeless, homogeneous objects. Among mechanically responsive materials, the few accidentally discovered examples of crystals that when heated suddenly jump, propelling themselves to distances that can reach thousands of times their own size in less than 1 ms, provide the most impressive display of the conversion of heat into mechanical work. Such thermosalient crystals are biomimetic, nonpolymeric self-actuators par excellence. Yet, due to the exclusivity and incongruity of the phenomenon, as well as because of the unavailability of ready analytical methodology for its characterization, the reasons behind this colossal self-actuation remain unexplained. Aimed at unraveling the mechanistic aspects of the related processes, herein we establish the first systematic assessment of the interplay among the thermodynamic, kinematic, structural, and macroscopic factors driving the thermosalient phenomenon. The collective results are consistent with a latent but very rapid anisotropic unit cell deformation in a two-stage process that ultimately results in crystal explosion, separation of debris, or crystal reshaping. The structural perturbations point to a mechanism similar to phase transitions of the martensitic family.
Inorganic Chemistry | 2012
Theodore Lazarides; Susanne Kuhri; Georgios Charalambidis; Manas K. Panda; Dirk M. Guldi; Athanassios G. Coutsolelos
In this report we describe the synthesis of multichromophore arrays consisting of two Bodipy units axially bound to a Sn(IV) porphyrin center either via a phenolate (3) or via a carboxylate (6) functionality. Absorption spectra and electrochemical studies show that the Bodipy and porphyrin chromophores interact weakly in the ground state. However, steady-state emission and excitation spectra at room temperature reveal that fluorescence from both the Bodipy and the porphyrin of 3 are strongly quenched suggesting that, in the excited state, energy and/or electron transfer might occur. Indeed, as transient absorption experiments show, selective excitation of Bodipy in 3 results in a rapid decay (τ ≈ 2 ps) of the Bodipy-based singlet excited state and a concomitant rise of a charge-separated state evolving from the porphyrin-based singlet excited state. In contrast, room-temperature emission studies on 6 show strong quenching of the Bodipy-based fluorescence leading to sensitized emission from the porphyrin moiety due to a transduction of the singlet excited state energy from Bodipy to the porphyrin. Emission experiments at 77 K in frozen toluene reveal that the room-temperature electron transfer pathway observed in 3 is suppressed. Instead, Bodipy excitation in 3 and 6 results in population of the first singlet excited state of the porphyrin chromophore. Subsequently, intersystem crossing leads to the porphyrin-based triplet excited state.
Journal of the American Chemical Society | 2014
Shi-Yao Yang; Xi-Ling Deng; Rui-Fang Jin; Panče Naumov; Manas K. Panda; Rong-Bin Huang; Lan-Sun Zheng; Boon K. Teo
We carried out photopolymerization by [2 + 2] dimerization of a photoreactive guest molecule in the channels of a photoreactive porous coordination polymer. The photoreactions of the guest and two host ligands were monitored by single-crystal X-ray crystallography, providing snapshots of the interplay between the reactive centers. By correlating the structures of these three photocenters, a strong synergism was discovered among three reaction (quasi)equilibria and three types of photochemical reactions (isomerization, dimerization, and polymerization). This result indicates a strong coupling and feedback mechanism among the photocenters moderated by the coordination backbone.
Journal of the American Chemical Society | 2015
Manas K. Panda; Tomče Runčevski; Ahmad Husain; Robert E. Dinnebier; Panče Naumov
When heated, single crystals of enantiomerically pure D- and L-pyroglutamic acid (PGA) are capable of recurring self-actuation due to rapid release of latent strain during a structural phase transition, while the racemate is mechanically inactive. Contrary to other thermosalient materials, where the effect is accompanied by crystal explosion due to ejection of debris or splintering, the chiral PGA crystals respond to internal strain with unprecedented robustness and can be actuated repeatedly without deterioration. It is demonstrated that this superelasticity is attained due to the low-dimensional hydrogen-bonding network which effectively accrues internal strain to elicit propulsion solely by elastic deformation without disintegration. One of the two polymorphs (β) associated with the thermosalient phase transition undergoes biaxial negative thermal expansion (αa = -54.8(8) × 10(-6) K(-1), αc = -3.62(8) × 10(-6) K(-1)) and exceptionally large uniaxial thermal expansion (αb = 303(1) × 10(-6) K(-1)). This second example of a thermosalient solid with anomalous expansion indicates that the thermosalient effect can be expected for first-order phase transitions in soft crystals devoid of an extended 3D hydrogen-bonding network that undergo strongly anisotropic thermal expansion around the phase transition.