Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manasvi S. Shah is active.

Publication


Featured researches published by Manasvi S. Shah.


Carcinogenesis | 2009

n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon

Laurie A. Davidson; Naisyin Wang; Manasvi S. Shah; Joanne R. Lupton; Ivan Ivanov; Robert S. Chapkin

We have hypothesized that dietary modulation of intestinal non-coding RNA [microRNA (miRNA)] expression may contribute to the chemoprotective effects of nutritional bioactives (fish oil and pectin). To fully understand the effects of these agents on the expression of miRNAs, Sprague-Dawley rats were fed diets containing corn oil or fish oil with pectin or cellulose and injected with azoxymethane (AOM, a colon-specific carcinogen) or saline (control). Real-time polymerase chain reaction using miRNA-specific primers and Taq Man probes was carried out to quantify effects on miRNA expression in colonic mucosa. From 368 mature miRNAs assayed, at an early stage of cancer progression (10 week post AOM injection), let-7d, miR-15b, miR-107, miR-191 and miR-324-5p were significantly (P < 0.05) affected by diet x carcinogen interactions. Overall, fish oil fed animals exhibited the smallest number of differentially expressed miRNAs (AOM versus saline treatment). With respect to the tumor stage (34 week post AOM injection), 46 miRNAs were dysregulated in adenocarcinomas compared with normal mucosa from saline-injected animals. Of the 27 miRNAs expressed at higher (P < 0.05) levels in tumors, miR-34a, 132, 223 and 224 were overexpressed at >10-fold. In contrast, the expression levels of miR-192, 194, 215 and 375 were dramatically reduced (< or = 0.32-fold) in adenocarcinomas. These results demonstrate for the first time the utility of the rat AOM model and the novel role of fish oil in protecting the colon from carcinogen-induced miRNA dysregulation.


Developmental Cell | 2013

Adrenocortical Zonation Results from Lineage Conversion of Differentiated Zona Glomerulosa Cells

Bethany D. Freedman; Petra Bukovac Kempna; Diana L. Carlone; Manasvi S. Shah; Nick A. Guagliardo; Paula Q. Barrett; Celso E. Gomez-Sanchez; Joseph A. Majzoub; David T. Breault

Lineage conversion of differentiated cells in response to hormonal feedback has yet to be described. To investigate this, we studied the adrenal cortex, which is composed of functionally distinct concentric layers that develop postnatally, the outer zona glomerulosa (zG) and the inner zona fasciculata (zF). These layers have separate functions, are continuously renewed in response to physiological demands, and are regulated by discrete hormonal feedback loops. Their cellular origin, lineage relationship, and renewal mechanism, however, remain poorly understood. Cell-fate mapping and gene-deletion studies using zG-specific Cre expression demonstrate that differentiated zG cells undergo lineage conversion into zF cells. In addition, zG maintenance is dependent on the master transcriptional regulator Steroidogenic Factor 1 (SF-1), and zG-specific Sf-1 deletion prevents lineage conversion. These findings demonstrate that adrenocortical zonation and regeneration result from lineage conversion and may provide a paradigm for homeostatic cellular renewal in other tissues.


Physiological Genomics | 2011

Integrated microRNA and mRNA expression profiling in a rat colon carcinogenesis model: effect of a chemo-protective diet

Manasvi S. Shah; Scott Schwartz; Chen Zhao; Laurie A. Davidson; Beiyan Zhou; Joanne R. Lupton; Ivan Ivanov; Robert S. Chapkin

We have recently demonstrated that nutritional bioactives (fish oil and pectin) modulate microRNA molecular switches in the colon. Since integrated analysis of microRNA and mRNA expression at an early stage of colon cancer development is lacking, in this study, four computational approaches were utilized to test the hypothesis that microRNAs and their posttranscriptionally regulated mRNA targets, i.e., both total mRNAs and actively translated mRNA transcripts, are differentially modulated by carcinogen and diet treatment. Sprague-Dawley rats were fed diets containing corn oil ± fish oil with pectin ± cellulose and injected with azoxymethane or saline (control). Colonic mucosa was assayed at an early time of cancer progression, and global gene set enrichment analysis was used to obtain those microRNAs significantly enriched by the change in expression of their putative target genes. In addition, cumulative distribution function plots and functional network analyses were used to evaluate the impact of diet and carcinogen combination on mRNA levels induced via microRNA alterations. Finally, linear discriminant analysis was used to identify the best single-, two-, and three-microRNA combinations for classifying dietary effects and colon tumor development. We demonstrate that polysomal profiling is tightly related to microRNA changes when compared with total mRNA profiling. In addition, diet and carcinogen exposure modulated a number of microRNAs (miR-16, miR-19b, miR-21, miR26b, miR27b, miR-93, and miR-203) linked to canonical oncogenic signaling pathways. Complementary gene expression analyses showed that oncogenic PTK2B, PDE4B, and TCF4 were suppressed by the chemoprotective diet at both the mRNA and protein levels.


Cell Stem Cell | 2016

Reprogrammed Stomach Tissue as a Renewable Source of Functional β Cells for Blood Glucose Regulation

Chaiyaboot Ariyachet; Alessio Tovaglieri; Guanjue Xiang; Jiaqi Lu; Manasvi S. Shah; Camilla A. Richmond; Catia Verbeke; Douglas A. Melton; Ben Z. Stanger; David P. Mooney; Ramesh A. Shivdasani; Shaun Mahony; Qing Xia; David T. Breault; Qiao Zhou

The gastrointestinal (GI) epithelium is a highly regenerative tissue with the potential to provide a renewable source of insulin(+) cells after undergoing cellular reprogramming. Here, we show that cells of the antral stomach have a previously unappreciated propensity for conversion into functional insulin-secreting cells. Native antral endocrine cells share a surprising degree of transcriptional similarity with pancreatic β cells, and expression of β cell reprogramming factors in vivo converts antral cells efficiently into insulin(+) cells with close molecular and functional similarity to β cells. Induced GI insulin(+) cells can suppress hyperglycemia in a diabetic mouse model for at least 6 months and regenerate rapidly after ablation. Reprogramming of antral stomach cells assembled into bioengineered mini-organs in vitro yielded transplantable units that also suppressed hyperglycemia in diabetic mice, highlighting the potential for development of engineered stomach tissues as a renewable source of functional β cells for glycemic control.


Frontiers in Genetics | 2012

Mechanistic insights into the role of microRNAs in cancer: influence of nutrient crosstalk

Manasvi S. Shah; Laurie A. Davidson; Robert S. Chapkin

A plethora of studies have described the disruption of key cellular regulatory mechanisms involving non-coding RNAs, specifically microRNAs (miRNA) from the let-7 family, the miR-17 family, miR-21, miR-143, and the miR-200 family, which contribute to aberrant signaling and tumor formation. Certain environmental factors, such as bioactive dietary agents, e.g., folate, curcumin, polyunsaturated fatty acids, are also thought to impact the progression and severity of cancer. In terms of the chemoprotective mechanisms of action, these bioactive dietary agents appear to act, in part, by modulating tissue levels of miR-16, miR-17 family, miR-26b, miR-106b, and miR-200 family miRNAs and their target genes. However, the mechanisms of nutrient action are not yet fully understood. Therefore, additional characterization of the putative underlying mechanisms is needed to further our understanding of the biology, early diagnosis, prevention, and the treatment of cancer. For the purpose of elucidating the epigenetic landscape of cancer, this review will summarize the key findings from recent studies detailing the effect of bioactive dietary agents on miRNA regulation in cancer.


Cell Reports | 2015

Dormant Intestinal Stem Cells Are Regulated by PTEN and Nutritional Status

Camilla A. Richmond; Manasvi S. Shah; Luke Deary; Danny C. Trotier; Horatio R. Thomas; Dana M. Ambruzs; Lijie Jiang; Bristol B. Whiles; Hannah Rickner; Robert K. Montgomery; Alessio Tovaglieri; Diana L. Carlone; David T. Breault

The cellular and molecular mechanisms underlying adaptive changes to physiological stress within the intestinal epithelium remain poorly understood. Here, we show that PTEN, a negative regulator of the PI3K→AKT→mTORC1-signaling pathway, is an important regulator of dormant intestinal stem cells (d-ISCs). Acute nutrient deprivation leads to transient PTEN phosphorylation within d-ISCs and a corresponding increase in their number. This release of PTEN inhibition renders d-ISCs functionally poised to contribute to the regenerative response during re-feeding via cell-autonomous activation of the PI3K→AKT→mTORC1 pathway. Consistent with its role in mediating cell survival, PTEN is required for d-ISC maintenance at baseline, and intestines lacking PTEN have diminished regenerative capacity after irradiation. Our results highlight a PTEN-dependent mechanism for d-ISC maintenance and further demonstrate the role of d-ISCs in the intestinal response to stress.


Biochimica et Biophysica Acta | 2012

Alteration of colonic stem cell gene signatures during the regenerative response to injury.

Laurie A. Davidson; Jennifer S. Goldsby; Evelyn S. Callaway; Manasvi S. Shah; Nick Barker; Robert S. Chapkin

Since aberrant wound healing and chronic inflammation can promote malignant transformation, we determined whether dietary bioactive fish oil (FO)-derived n-3 polyunsaturated fatty acids (n-3 PUFA) modulate stem cell kinetics in a colitis-wounding model. Lgr5-LacZ and Lgr5-EGFP-IRES-creER(T2) mice were fed diets enriched with n-3 PUFA vs n-6 PUFA (control) and exposed to dextran sodium sulfate (DSS) for 5days in order to induce crypt damage and colitis throughout the colon. Stem cell number, cell proliferation, apoptosis, expression of stem cell (Lgr5, Sox9, Bmi1, Hopx, mTert, Ascl2, and DCAMKL-1) and inflammation (STAT3) markers were quantified. DSS treatment resulted in the ablation of Lgr5(+) stem cells in the distal colon, concurrent with the loss of distal crypt structure and proliferating cells. Lgr5, Ascl2 and Hopx mRNA expression levels were decreased in damaged colonic mucosa. Lgr5(+) stem cells reappeared at day 5 of DSS recovery, with normal levels attained by day 6 of recovery. There was no effect of diet on the recovery of stem cells. FO fed animals exhibited higher levels of phospho-STAT3 at all time points, consistent with a higher wounding by DSS in FO feeding. n-3 PUFA-fed mice exhibited a reduction in stem cell associated factors, Ascl2, Axin2 and EphB3. These results indicate that rapidly cycling Lgr5(+) stem cells residing at position 1 in the colon epithelium are highly susceptible to DSS-induced damage and that dietary cues can impact stem cell regulatory networks.


Biochimica et Biophysica Acta | 2016

Comparative effects of diet and carcinogen on microRNA expression in the stem cell niche of the mouse colonic crypt

Manasvi S. Shah; Eunjoo Kim; Laurie A. Davidson; Jason M. Knight; Roger S. Zoh; Jennifer S. Goldsby; Evelyn S. Callaway; Beyian Zhou; Ivan Ivanov; Robert S. Chapkin

There is mounting evidence that noncoding microRNAs (miRNA) are modulated by select chemoprotective dietary agents. For example, recently we demonstrated that the unique combination of dietary fish oil (containing n-3 fatty acids) plus pectin (fermented to butyrate in the colon) (FPA) up-regulates a subset of putative tumor suppressor miRNAs in intestinal mucosa, and down-regulates their predicted target genes following carcinogen exposure as compared to control (corn oil plus cellulose (CCA)) diet. To further elucidate the biological effects of diet and carcinogen modulated miRs in the colon, we verified that miR-26b and miR-203 directly target PDE4B and TCF4, respectively. Since perturbations in adult stem cell dynamics are generally believed to represent an early step in colon tumorigenesis and to better understand how the colonic stem cell population responds to environmental factors such as diet and carcinogen, we additionally determined the effects of the chemoprotective FPA diet on miRNAs and mRNAs in colonic stem cells obtained from Lgr5-EGFP-IRES-creER(T2) knock-in mice. Following global miRNA profiling, 26 miRNAs (P<0.05) were differentially expressed in Lgr5(high) stem cells as compared to Lgr5(negative) differentiated cells. FPA treatment up-regulated miR-19b, miR-26b and miR-203 expression as compared to CCA specifically in Lgr5(high) cells. In contrast, in Lgr5(negative) cells, only miR-19b and its indirect target PTK2B were modulated by the FPA diet. These data indicate for the first time that select dietary cues can impact stem cell regulatory networks, in part, by modulating the steady-state levels of miRNAs. To our knowledge, this is the first study to utilize Lgr5(+) reporter mice to determine the impact of diet and carcinogen on miRNA expression in colonic stem cells and their progeny.


Developmental Dynamics | 2016

An enduring role for quiescent stem cells.

Camilla A. Richmond; Manasvi S. Shah; Diana L. Carlone; David T. Breault

The intestines ability to recover from catastrophic injury requires quiescent intestinal stem cells (q‐ISCs). While rapidly cycling (Lgr5+) crypt base columnar (CBC) ISCs normally maintain the intestine, they are highly sensitive to pathological injuries (irradiation, inflammation) and must be restored by q‐ISCs to sustain intestinal homeostasis. Despite clear relevance to human health, virtually nothing is known regarding the factors that regulate q‐ISCs. A comprehensive understanding of these mechanisms would likely lead to targeted new therapies with profound therapeutic implications for patients with gastrointestinal conditions. We briefly review the current state of the literature, highlighting homeostatic mechanisms important for q‐ISC regulation, listing key questions in the field, and offer strategies to address them. Developmental Dynamics 245:718–726, 2016.


The Journal of Physiology | 2016

Factors regulating quiescent stem cells: insights from the intestine and other self‐renewing tissues

Camilla A. Richmond; Manasvi S. Shah; Diana L. Carlone; David T. Breault

Long‐lived and self‐renewing adult stem cells (SCs) are essential for homeostasis in a wide range of tissues and can include both rapidly cycling and quiescent (q)SC populations. Rapidly cycling SCs function principally during normal tissue maintenance and are highly sensitive to stress, whereas qSCs exit from their quiescent state in response to homeostatic imbalance and regenerative pressure. The regulatory mechanisms underlying the quiescent state include factors essential for cell cycle control, stress response and survival pathways, developmental signalling pathways, and post‐transcriptional modulation. Here, we review these regulatory mechanisms citing observations from the intestine and other self‐renewing tissues.

Collaboration


Dive into the Manasvi S. Shah's collaboration.

Top Co-Authors

Avatar

David T. Breault

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana L. Carlone

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hannah Rickner

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge