Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manchang Liu is active.

Publication


Featured researches published by Manchang Liu.


Journal of The American Society of Nephrology | 2008

The Local and Systemic Inflammatory Transcriptome after Acute Kidney Injury

Dmitry N. Grigoryev; Manchang Liu; Heitham T. Hassoun; Chris Cheadle; Kathleen C. Barnes; Hamid Rabb

Studies in humans and animal models have demonstrated that acute kidney injury (AKI) has a significant effect on the function of extrarenal organs. The combination of AKI and lung dysfunction is associated with 80% mortality; the lung, because of its extensive capillary network, is a prime target for AKI-induced effects. The study presented here tested the hypothesis that AKI leads to a vigorous inflammatory response and produces distinct genomic signatures in the kidney and lung. In a murine model of ischemic AKI, prominent global transcriptomic changes and histologic injury in both kidney and lung tissues were identified. These changes were evident at both early (6 h) and late (36 h) timepoints after 60-min bilateral kidney ischemia and were more prominent than similar timepoints after sham surgery or 30 min of ischemia. The inflammatory transcriptome (109 genes) of both organs changed with marked similarity, including the innate immunity genes Cd14, Socs3, Saa3, Lcn2, and Il1r2. Functional genomic analysis of these genes suggested that IL-10 and IL-6 signaling was involved in the distant effects of local inflammation, and this was supported by increased serum levels of IL-10 and IL-6 after ischemia-reperfusion. In summary, this is the first comprehensive analysis of concomitant inflammation-associated transcriptional changes in the kidney and a remote organ during AKI. Functional genomic analysis identified potential mediators that connect local and systemic inflammation, suggesting that this type of analysis may be a useful discovery tool for novel biomarkers and therapeutic drug development.


Journal of The American Society of Nephrology | 2008

Acute Kidney Injury Leads to Inflammation and Functional Changes in the Brain

Manchang Liu; Yideng Liang; Srinivasulu Chigurupati; Justin D. Lathia; Mikhail V. Pletnikov; Zhaoli Sun; Michael T. Crow; Christopher A. Ross; Mark P. Mattson; Hamid Rabb

Although neurologic sequelae of acute kidney injury (AKI) are well described, the pathogenesis of acute uremic encephalopathy is poorly understood. This study examined the short-term effect of ischemic AKI on inflammatory and functional changes of the brain in mice by inducing bilateral renal ischemia for 60 min and studying the brains 24 h later. Compared with sham mice, mice with AKI had increased neuronal pyknosis and microgliosis in the brain. AKI also led to increased levels of the proinflammatory chemokines keratinocyte-derived chemoattractant and G-CSF in the cerebral cortex and hippocampus and increased expression of glial fibrillary acidic protein in astrocytes in the cortex and corpus callosum. In addition, extravasation of Evans blue dye into the brain suggested that the blood-brain barrier was disrupted in mice with AKI. Because liver failure also leads to encephalopathy, ischemic liver injury was induced in mice with normal renal function; neuronal pyknosis and glial fibrillary acidic protein expression were not increased, suggesting differential effects on the brain depending on the organ injured. For evaluation of the effects of AKI on brain function, locomotor activity was studied using an open field test. Mice subjected to renal ischemia or bilateral nephrectomy had moderate to severe declines in locomotor activity compared with sham-operated mice. These data demonstrate that severe ischemic AKI induces inflammation and functional changes in the brain. Targeting these pathways could reduce morbidity and mortality in critically ill patients with severe AKI.


Kidney International | 2009

Transcription factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice

Manchang Liu; Dmitry N. Grigoryev; Michael T. Crow; Mark Haas; Masayuki Yamamoto; Sekhar P. Reddy; Hamid Rabb

Oxidative stress is involved in acute kidney injury due to ischemia-reperfusion and chemotherapy-induced nephrotoxicity. To investigate their basic mechanisms we studied the role of nuclear factor-erythroid 2-p45-related factor 2 (Nrf2), a redox-sensitive transcription factor that regulates expression of several antioxidant and cytoprotective genes. We compared the responses of Nrf2-knockout mice and their wild-type littermates in established mouse models of ischemia-reperfusion injury and cisplatin-induced nephrotoxicity. Several Nrf2-regulated genes encoding antioxidant enzymes/proteins were significantly upregulated in the kidneys of wild type but not Nrf2-knockout mice following renal ischemia. Renal function, histology, vascular permeability, and survival were each significantly worse in the Nrf2 knockout mice. Further, proinflammatory cytokine and chemokine expression tended to increase after ischemia in the knockout compared to the wild-type mice. Treatment of the knockout mice with the antioxidants N-acetyl-cysteine or glutathione improved renal function. The knockout mice were more susceptible to cisplatin-induced nephrotoxicity, and this was blunted by N-acetyl-cysteine pretreatment. Our study demonstrates that Nrf2-deficiency enhances susceptibility to both ischemic and nephrotoxic acute kidney injury, and identifies this transcription factor as a potential therapeutic target in these injuries.


Journal of Immunology | 2006

Phenotypic and Functional Characterization of Kidney-Infiltrating Lymphocytes in Renal Ischemia Reperfusion Injury

Dolores Ascon; Sergio Lopez-Briones; Manchang Liu; Miguel Ascon; Vladimir Savransky; Robert B. Colvin; Mark J. Soloski; Hamid Rabb

T and B lymphocytes have been implicated in the pathogenesis of renal ischemia reperfusion injury (IRI). The trafficking of lymphocytes into kidneys during IRI has been postulated to underlie this effect, but has not been rigorously studied. We therefore characterized the lymphocyte populations infiltrating into mouse kidneys 3 and 24 h after renal IRI. Immunohistochemistry and flow cytometry staining of kidney lymphocytes showed increased trafficking of CD3+ T cells and CD19+ B cells in both sham-operated and IRI mice 3 h after renal IRI. In the IRI mice, increased infiltration of NK1.1+ and CD4+NK1.1+ cells compared with normal and sham-operated mice was observed 3 and 24 h after renal IRI, respectively. After 24 h of renal IRI, the decreased percentages of CD3+, CD19+, and NK1.1+ populations in the IRI mice compared with control groups were observed. Increased TNF-α and IFN-γ production of kidney infiltration CD3+ T cells in IRI mice but not sham-operated mice was found. Unexpectedly, isolation and transfer of kidney-infiltrating lymphocytes 24 h after renal IRI into T cell-deficient mice reduced their functional and histological injury after renal IRI, suggesting that kidney-infiltrating lymphocytes could have a protective function. These quantitative, qualitative, and functional changes in kidney lymphocytes provide mechanistic insight into how lymphocytes modulate IRI, as well as demonstrating that abdominal surgery alone leads to lymphocyte changes in kidney.


Journal of The American Society of Nephrology | 2006

A Pathophysiologic Role for T Lymphocytes in Murine Acute Cisplatin Nephrotoxicity

Manchang Liu; Chu Chun Chien; Melissa J. Burne-Taney; Roshni R. Molls; Lorraine C. Racusen; Robert B. Colvin; Hamid Rabb

Recent evidence supports a role for an inflammatory pathogenesis of cisplatin nephrotoxicity, but immune cell-mediated mechanisms in this disease are still largely unknown. The role for T lymphocytes on cisplatin-induced acute kidney injury was examined with C57BL/6 T cell-deficient (nu/nu) mice and CD4- or CD8-deficient mice and their wild-type (WT) littermates. All mice received a single dose of cisplatin at 40 mg/kg (intraperitoneally) and were followed up for 72 h. At 72 h after cisplatin administration, T cell-deficient mice had a marked attenuation in renal dysfunction (serum creatinine 3.2+/-0.5 versus 0.8+/-0.1 mg/dl; P=0.007), kidney tubular injury (scores 1.44+/-0.15 versus 0.22+/-0.08; P<0.0001), and survival. Adoptive transfer of T cells into nu/nu mice followed by cisplatin enhanced renal dysfunction and tubular injury. The increase in renal myeloperoxidase activity after cisplatin administration was blunted in nu/nu mice. Renal TNF-alpha, IL-1beta, and keratinocyte-derived chemokine protein expression was increased in WT mice but not in nu/nu mice after cisplatin administration. T cell levels significantly increased in kidneys of WT mice after cisplatin administration as early as at 1 h, peaked at 12 h, and declined by 24 h. CD4- and, to a lesser degree, CD8-deficient mice were relatively protected from cisplatin-induced mortality and renal dysfunction compared with WT mice. These data demonstrate that T lymphocytes are direct mediators of experimental cisplatin nephrotoxicity. Targeting T lymphocytes could lead to improved ways to administer cisplatin safely to cancer patients.


American Journal of Physiology-renal Physiology | 2009

Kidney ischemia-reperfusion injury induces caspase-dependent pulmonary apoptosis

Heitham T. Hassoun; Mihaela L. Lie; Dmitry N. Grigoryev; Manchang Liu; Rubin M. Tuder; Hamid Rabb

Distant organ effects of acute kidney injury (AKI) are a leading cause of morbidity and mortality. While little is known about the underlying mechanisms, limited data suggest a role for inflammation and apoptosis. Utilizing a lung candidate gene discovery approach in a mouse model of ischemic AKI-induced lung dysfunction, we identified prominent lung activation of 66 apoptosis-related genes at 6 and/or 36 h following ischemia, of which 6 genes represent the tumor necrosis factor receptor (TNFR) superfamily, and another 23 genes are associated with the TNFR pathway. Given that pulmonary apoptosis is an important pathogenic mechanism of acute lung injury (ALI), we hypothesized that AKI leads to pulmonary proapoptotic pathways that facilitate lung injury and inflammation. Functional correlation with 1) terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling and 2) active caspase-3 (aC3) activity, immunoblotting, and immunohistochemistry (IHC) identified kidney IRI-induced pulmonary apoptosis at 24 h, and colocalization studies with CD34 identified predominantly endothelial apoptosis. Mice were treated with the caspase inhibitor Z-VAD-FMK (0.25 mg ip) or vehicle 1 h before and 8 h after sham or kidney IRI, and bronchoalveolar lavage fluid protein was measured at 36 h as a surrogate for lung leak. Caspase inhibition reduced lung microvascular changes after kidney IRI. The pulmonary apoptosis seen in wild-type control mice during AKI was absent in TNFR(-/-) mice. Using an initial genomic approach to discovery followed by a mechanistic approach to disease targeting, we demonstrate that pulmonary endothelial apoptosis is a direct mediator of the distant organ dysfunction during experimental AKI.


Kidney International | 2009

Renal ischemia-reperfusion leads to long term infiltration of activated and effector-memory T lymphocytes

Miguel Ascon; Dolores Ascon; Manchang Liu; Chris Cheadle; Chaitali Sarkar; Lorraine C. Racusen; Heitham T. Hassoun; Hamid Rabb

It is well-established that significant ischemia-reperfusion injury during kidney transplantation results in increased incidence of long-term fibrosis and rejection. To test for a role of T cell infiltration and activation following ischemic injury, we induced both bilateral and unilateral renal ischemia in mice, followed by reperfusion, and then isolated mononuclear cells. Analysis of these cells by flow cytometry showed that 2 weeks after bilateral ischemia there was a significant increase of CD8(+) T cells. Furthermore, both CD4(+) and CD8(+) T cells infiltrated the injured kidney 6 weeks after unilateral ischemia. These T cells had increased expression of CD69(+) and CD44(hi)CD62L(-), markers of activation and effector-memory, respectively. CD4(+)NK1.1(+) and CD19(+) B cells were decreased in percentage both 6 and 11 weeks after bilateral or unilateral injury. There was a significant upregulation of IL-1beta, IL-6, TNF-alpha, IFN-gamma, MIP-2, and RANTES expression, measured by real-time PCR, 6 weeks after unilateral renal ischemia, further indicating T cell activation. Depletion of CD4(+) and CD8(+) T cells before ischemia caused less medullary damage and reduced kidney IFN-gamma expression, whereas their depletion following ischemia increased kidney IL-1beta; however, depletion of these cells had no effect on histological damage to the kidney. Our study demonstrates that moderate or severe kidney ischemia induces long-term T lymphocyte infiltration and cytokine/chemokine upregulation, leading to kidney structural changes.


Kidney International | 2008

Uremic lung: new insights into a forgotten condition

Paul J. Scheel; Manchang Liu; Hamid Rabb

The high mortality rate of acute kidney injury (AKI) despite advances in dialysis led to a renewed appreciation of the impact of AKI on distant organ dysfunction. Mechanistic studies demonstrated that AKI induces increased lung vascular permeability, soluble and cellular inflammation, and dysregulated salt and water channels. AKI also affects the brain, heart, liver, bone marrow, and gastrointestinal tract. Klein et al. now demonstrate that interleukin-6 is a direct mediator of AKI-induced lung changes.


Kidney International | 2014

The Nrf2 triterpenoid activator, CDDO-imidazolide, protects kidneys from ischemia-reperfusion injury in mice.

Manchang Liu; Narsa M. Reddy; Elizabeth Higbee; Haranatha R. Potteti; Sanjeev Noel; Lorraine C. Racusen; Thomas W. Kensler; Michael B. Sporn; Sekhar P. Reddy; Hamid Rabb

Acute kidney injury (AKI) caused by ischemia reperfusion is a major clinical problem in both native and transplanted kidneys. We previously showed that deficiency of Nrf2, a potent bZIP transcription factor that binds to the antioxidant response element, enhances susceptibility to experimental ischemic AKI. Here we further explored the role of Nrf2 in AKI by amplifying Nrf2 activation in vivo and in vitro with the synthetic triterpenoid CDDO-imidazolide. Mice treated with CDDO-imidazolide and undergoing experimental bilateral ischemic AKI had improved survival and renal function. Treated mice had improved renal histology with a decrease in tubular injury, as well as a decrease in pro-inflammatory cytokine and chemokine production compared to vehicle-treated mice. In an exploration of protective mechanisms, we found an up-regulation of Nrf2 target antioxidant genes in CDDO-imidazolide treated mouse kidneys. Furthermore, Nrf2 deficient mice treated with CDDO-imidazolide had no significant improvement in mortality, renal function or histology, pro-inflammatory cytokine gene expression, and no significant increase in antioxidant gene expression. In vitro studies demonstrated that the renal epithelial cells were likely an important target of CDDO-imidazolide. Thus, activation of Nrf2 signaling with CDDO-imidazolide confers protection from AKI, and presents a new therapeutic opportunity for this common and serious condition.


Journal of Immunology | 2009

The Role for T Cell Repertoire/Antigen-Specific Interactions in Experimental Kidney Ischemia Reperfusion Injury

Shailesh Satpute; Jong Myun Park; Hye Ryoun Jang; Patricia Agreda; Manchang Liu; Maria Teresa Gandolfo; Lorraine C. Racusen; Hamid Rabb

T cells have been implicated in the early pathogenesis of ischemia reperfusion injury (IRI) of kidney, liver, lung, and brain. It is not known whether Ag-TCR engagement followed by Ag-specific T cell activation participates in IRI. T cell-deficient nu/nu mice are moderately resistant to renal IRI, which can be reversed upon reconstitution with syngeneic T cells. In this study, we found that nu/nu mice reconstituted with DO11.10 T cells, limited in their TCR repertoire, have significantly less kidney dysfunction and tubular injury after renal IRI compared with that in nu/nu mice reconstituted with wild-type T cells having a diverse TCR repertoire. CD4+ T cells infiltrating ischemic kidneys of nu/nu mice reconstituted with DO11.10 T cells exhibited lower IFN-γ production than that of wild-type controls. Frequency of regulatory T cells in kidneys of these mice was similar in both DO11.10 T cells and wild-type T cell recipient groups. DO11.10 mice immunized with OVA-CFA had significantly worse kidney function at 24 h after ischemia than those immunized with CFA alone. Thus, without T cell activation, diverse TCR repertoire was important for renal IRI in naive mice. However, once T cells were activated in an Ag-specific manner through TCR in DO11.10 mice, a restricted TCR repertoire no longer limited the extent of kidney injury. Thus, both TCR repertoire-dependent and -independent factors mediate T cell functions in kidney IRI.

Collaboration


Dive into the Manchang Liu's collaboration.

Top Co-Authors

Avatar

Hamid Rabb

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihaela L. Lie

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Rubin M. Tuder

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Chris Cheadle

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hye Ryoun Jang

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge