Mandayam V. Parthasarathy
Cornell University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mandayam V. Parthasarathy.
Protoplasma | 1992
Biao Ding; Robert Turgeon; Mandayam V. Parthasarathy
SummaryThe substructure of plasmodesmata in freeze-substituted tissues of developing leaves of the tobacco plant (Nicotiana tabacum L. var. Maryland Mammoth) was studied by high resolution electron microscopy and computer image enhancement techniques. Both the desmotubule wall and the inner leaflet of the plasmodesmatal plasma membrane are composed of regularly spaced electron-dense particles approximately 3 nm in diameter, presumably proteinaceous and embedded in lipid. The central rod of the desmotubule is also particulate. In plasmodesmata with central cavities, spoke-like extensions are present between the desmotubule and the plasma membrane in the central cavity region. The space between the desmotubule and the plasma membrane appears to be the major pathway for intercellular transport through plasmodesmata. This pathway may be tortuous and its dimensions could be regulated by interactions between desmotubule and plasma membrane particles.
Journal of Ultrastructure Research | 1972
Mandayam V. Parthasarathy; Kurt Mühlethaler
Microfilaments 50–60 A in diameter occur commonly in many elongating cells in stems and roots of twelve species of plants investigated. The microfilaments occur in bundles as cytoplasmic fibers in the peripheral regions of an elongating cell and are usually oriented parallel to the longitudinal axis of the cell. Such cytoplasmic fibers may be up to 12 μ in length and 0.1–0.3 μ in width. The number of cytoplasmic fibers per cell varies from 1 to 5. There is no evidence to indicate that the fibers composed of microfilaments are derived from microtubules during fixation. The distribution of microfilaments in various types of plant cells and their possible function is discussed.
Planta | 1988
Biao Ding; Mandayam V. Parthasarathy; Karl J. Niklas; Robert Turgeon
A morphometric analysis of developing leaves of Nicotiana tabacum L. was conducted to determine whether imported photoassimilates could be unloaded by symplastic transport and whether interruption of symplastic transport could account for termination of import. Five classes of veins were recognized, based on numbers of cells in transverse section. Photoassimilate is unloaded primarily from Class III veins in tissue nearing the end of the sink phase of development. Smaller veins (Class IV and V) do not transport or unload photoassimilate in sink tissue because the sieve elements of these veins are immature until after the tissue stops importing. In Class III veins the sieve element-companion cell (SE-CC) complexes are surrounded by phloem parenchyma which abuts the bundle sheath. Along the most obvious unloading route, from SE-CC complex to phloem parenchyma to bundle sheath to mesophyll cells, the frequency of plasmodesmata at each interface increases. To determine whether this pattern of plasmodesmatal contact is consistent with symplastic unloading we first demonstrated, by derivation from Ficks law that the rate of diffusion from a compartment is proportional to a number N which is equal to the ratio of surface area to volume of the compartment multiplied by the frequency of pores (plasmodesmata) which connect it to the next compartment. N was calculated for each compartment within the vein which has the SE-CC complex as its center, and was shown to be statistically the same in all cases except one. These observations are consistent with a symplastic unloading route. As the leaf tissue matures and stops importing, plasmodesmatal frequency along the unloading route decreases and contact area between cells also decreases as intercellular spaces enlarge. As a result, the number of plasmodesmata between the SE-CC complex and the first layer of mesophyll cells declines in nonimporting tissue to 34% of the number found in importing tissue, indicating that loss of symplastic continuity between the phloem and surrounding cells plays a role in termination of photoassimilate unloading.
Planta | 2006
Ajay K. Garg; Ruairidh J. H. Sawers; Haiyang Wang; Ju-Kon Kim; Joseph M. Walker; Thomas P. Brutnell; Mandayam V. Parthasarathy; Richard D. Vierstra; Ray Wu
The phytochromes are a family of red/far-red light absorbing photoreceptors that control plant developmental and metabolic processes in response to changes in the light environment. We report here the overexpression of Arabidopsis thaliana PHYTOCHROME A (PHYA) gene in a commercially important indica rice variety (Oryza sativa L. Pusa Basmati-1). The expression of the transgene was driven by the light-regulated and tissue-specific rice rbcS promoter. Several independent homozygous sixth generation (T5) transgenic lines were characterized and shown to accumulate relatively high levels of PHYA protein in the light. Under both far-red and red light, PHYA-overexpressing lines showed inhibition of the coleoptile extension in comparison to non-transgenic seedlings. Furthermore, compared with non-transgenic rice plants, mature transgenic plants showed significant reduction in plant height, internode length and internode diameter (including differences in cell size and number), and produced an increased number of panicles per plant. Under greenhouse conditions, rice grain yield was 6–21% higher in three PHYA-overexpressing lines than in non-transgenic plants. These results demonstrate the potential of manipulating light signal-transduction pathways to minimize the problems of lodging in basmati/aromatic rice and to enhance grain productivity.
Protoplasma | 2004
Dominick J. Paolillo; David F. Garvin; Mandayam V. Parthasarathy
Summary.The Or mutation in cauliflower (Brassica oleracea L. var. botrytis) leads to abnormal accumulations of β-carotene in orange chromoplasts, in tissues in which leucoplasts are characteristic of wild-type plants. Or chromoplasts were investigated by light microscopy of fresh materials and electron microscopy of glutaraldehyde- and potassium permanganate-fixed materials. Carotenoid inclusions in Or chromoplasts resemble those found in carrot root chromoplasts in their optical activity and angular shape. Electron microscopy revealed that the inclusions are made up of parallel, membrane-bound compartments. These stacks of membranes are variously rolled and folded into three-dimensional objects. We classify Or chromoplasts as “membranous” chromoplasts. The Or mutation also limits plastid replication so that a single chromoplast constitutes the plastidome in most of the affected cells. There are one to two chromoplasts in each cell of a shoot apex. The ability of differentiated chromoplasts to divide in the apical meristems of Or mutant plants resembles the ability of proplastids to maintain plastid continuity from cell to cell in meristems of Arabidopsis thaliana mutants in which plastid replication is drastically limited. The findings are used to discuss the number of levels of regulation involved in plastid replication.
Protoplasma | 1991
Biao Ding; Robert Turgeon; Mandayam V. Parthasarathy
SummaryThe organization and distribution of microfilaments in freze substituted leaf tissues and root tips of tobacco plants (Nicotiana tabacum L. var. Maryland Mammoth) were investigated in detail. Three categories of microfilaments were recognized in interphase cells of all tissues including those in the root cap: (1) microfilament bundles; (2) single microfilaments; (3) cortical microtubuleassociated microfilaments. While the microfilament bundles appeared to be distributed throughout the cytoplasm, the single microfilaments were mainly confined to the cell periphery. All three categories of microfilaments were associated with various organelles. Our study indicates that the three categories of microfilaments are normal cytoskeletal components in higher plant cells. The implications of these findings are discussed.
Protoplasma | 1991
Biao Ding; Robert Turgeon; Mandayam V. Parthasarathy
SummaryThe organization and distribution of microfilaments (MFs) in the preprophase bands (PPBs) of tobacco (Nicotiana tabacum L. var. Maryland Mammoth) root tip cells were studied with high pressure freezing and freeze-substitution methods. MFs were present predominantly as single filaments interspersed among microtubules (MTs) throughout the PPB. Some MFs appeared to be associated with MTs, whereas others were not. This is the first time that MFs have been demonstrated in the PPB at the electron microscope level.
Plant Physiology | 2015
Hui Yuan; Katherine Owsiany; T.E. Sheeja; Xiangjun Zhou; Caroline Rodriguez; Yongxi Li; Ralf Welsch; Noam Chayut; Yong Yang; Theodore W. Thannhauser; Mandayam V. Parthasarathy; Qiang Xu; Xiuxin Deng; Zhangjun Fei; Ari Schaffer; Nurit Katzir; Joseph Burger; Yaakov Tadmor; Li Li
Function gain to promote carotenoid overaccumulation affects chromoplast biogenesis. Carotenoids are crucial for plant growth and human health. The finding of ORANGE (OR) protein as a pivotal regulator of carotenogenesis offers a unique opportunity to comprehensively understand the regulatory mechanisms of carotenoid accumulation and develop crops with enhanced nutritional quality. Here, we demonstrated that alteration of a single amino acid in a wild-type OR greatly enhanced its ability to promote carotenoid accumulation. Whereas overexpression of OR from Arabidopsis (Arabidopsis thaliana; AtOR) or from the agronomically important crop sorghum (Sorghum bicolor; SbOR) increased carotenoid levels up to 2-fold, expression of AtORHis (R90H) or SbORHis (R104H) variants dramatically enhanced carotenoid accumulation by up to 7-fold in the Arabidopsis calli. Moreover, we found that AtORAla (R90A) functioned similarly to AtORHis to promote carotenoid overproduction. Neither AtOR nor AtORHis greatly affected carotenogenic gene expression. AtORHis exhibited similar interactions with phytoene synthase (PSY) as AtOR in posttranscriptionally regulating PSY protein abundance. AtORHis triggered biogenesis of membranous chromoplasts in the Arabidopsis calli, which shared structures similar to chromoplasts found in the curd of the orange cauliflower (Brassica oleracea) mutant. By contrast, AtOR did not cause plastid-type changes in comparison with the controls, but produced plastids containing larger and electron-dense plastoglobuli. The unique ability of AtORHis in mediating chromoplast biogenesis is responsible for its induced carotenoid overproduction. Our study demonstrates ORHis/Ala as powerful tools for carotenoid enrichment in plants, and provides insights into the mechanisms underlying ORHis-regulated carotenoid accumulation.
Journal of Phycology | 1979
Jan Adamec; John H. Peverly; Mandayam V. Parthasarathy
Potassium is an important component information of polyphosphate bodies (PB) by Chlorella pyrenoidosa Chick. However, it was not detected in PB by X‐ray energy dispersive microanalyses when the specimens were subjected to a standard preparation procedure for transmission electron microscopy. Intact cells were incinerated at 350 C on stainless steel grids coated with silicon monoxide. X‐ray spectra from PB showed conspicuous peaks of energy counts in the Kα lines for phosphorus and potassium. It is proposed that potassium is a major cationic component of PB in C. pyrenoidosa grown in potassium sufficient medium.
Planta | 1996
Douglas W. Darnowski; Rudolf Valenta; Mandayam V. Parthasarathy
Profilin is a G-actin monomer-binding protein which has been shown to participate in actin-based tipgrowth of animal cells. The abundance of profilin in pollen and its occurrence in several vegetable foods raises the question of the role of profilin in plants. First, its distribution throughout various parts of the plant needs to be determined. This paper describes observations on the presence of profilin in the tomato plant (Lycopersicon esculentum Mill.). The distribution of profilin in flower buds, stems, leaves, roots, and fruits of tomato was determined by immunoblotting and by tissue printing, showing that profilin is present in most if not all parts of the tomato plant.