Mandeep Takhar
Simon Fraser University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mandeep Takhar.
PLOS ONE | 2012
Mark P. Labrecque; Mandeep Takhar; Brett D. Hollingshead; Gratien G. Prefontaine; Gary H. Perdew; Timothy V. Beischlag
The activated AHR/ARNT complex (AHRC) regulates the expression of target genes upon exposure to environmental contaminants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Importantly, evidence has shown that TCDD represses estrogen receptor (ER) target gene activation through the AHRC. Our data indicates that AHR and ARNT act independently from each other at non-dioxin response element sites. Therefore, we sought to determine the specific functions of AHR and ARNT in estrogen-dependent signaling in human MCF7 breast cancer and human ECC-1 endometrial carcinoma cells. Knockdown of AHR with siRNA abrogates dioxin-inducible repression of estrogen-dependent gene transcription. Intriguingly, knockdown of ARNT does not effect TCDD-mediated repression of estrogen-regulated transcription, suggesting that AHR represses ER function independently of ARNT. This theory is supported by the ability of the selective AHR modulator 3′,4′-dimethoxy-α-naphthoflavone (DiMNF) to repress estrogen-inducible transcription. Furthermore, basal and estrogen-activated transcription of the genes encoding cathepsin-D and pS2 are down-regulated in MCF7 cells but up-regulated in ECC-1 cells in response to loss of ARNT. These responses are mirrored at the protein level with cathepsin-D. Furthermore, knock-down of ARNT led to opposite but corresponding changes in estrogen-stimulated proliferation in both MCF7 and ECC-1 cells. We have obtained experimental evidence demonstrating a dioxin-dependent repressor function for AHR and a dioxin-independent co-activator/co-repressor function for ARNT in estrogen signalling. These results provide us with further insight into the mechanisms of transcription factor crosstalk and putative therapeutic targets in estrogen-positive cancers.
Oncotarget | 2016
Radka Stoyanova; Alan Pollack; Mandeep Takhar; Charles M. Lynne; Nestor A. Parra; Lucia L.C. Lam; Mohammed Alshalalfa; Christine Buerki; Rosa Castillo; Merce Jorda; Hussam Al-Deen Ashab; Oleksandr N. Kryvenko; Sanoj Punnen; Dipen J. Parekh; M.C. Abramowitz; Robert J. Gillies; Elai Davicioni; Nicholas Erho; Adrian Ishkanian
Standard clinicopathological variables are inadequate for optimal management of prostate cancer patients. While genomic classifiers have improved patient risk classification, the multifocality and heterogeneity of prostate cancer can confound pre-treatment assessment. The objective was to investigate the association of multiparametric (mp)MRI quantitative features with prostate cancer risk gene expression profiles in mpMRI-guided biopsies tissues. Global gene expression profiles were generated from 17 mpMRI-directed diagnostic prostate biopsies using an Affimetrix platform. Spatially distinct imaging areas (‘habitats’) were identified on MRI/3D-Ultrasound fusion. Radiomic features were extracted from biopsy regions and normal appearing tissues. We correlated 49 radiomic features with three clinically available gene signatures associated with adverse outcome. The signatures contain genes that are over-expressed in aggressive prostate cancers and genes that are under-expressed in aggressive prostate cancers. There were significant correlations between these genes and quantitative imaging features, indicating the presence of prostate cancer prognostic signal in the radiomic features. Strong associations were also found between the radiomic features and significantly expressed genes. Gene ontology analysis identified specific radiomic features associated with immune/inflammatory response, metabolism, cell and biological adhesion. To our knowledge, this is the first study to correlate radiogenomic parameters with prostate cancer in men with MRI-guided biopsy.
Cancer Research | 2016
Sungyong You; Beatrice Knudsen; Nicholas Erho; Mohammed Alshalalfa; Mandeep Takhar; Hussam Al-Deen Ashab; Elai Davicioni; R. Jeffrey Karnes; Eric A. Klein; Robert B. Den; Ashley E. Ross; Edward M. Schaeffer; Isla P. Garraway; Jayoung Kim; Michael R. Freeman
Prostate cancer is a biologically heterogeneous disease with variable molecular alterations underlying cancer initiation and progression. Despite recent advances in understanding prostate cancer heterogeneity, better methods for classification of prostate cancer are still needed to improve prognostic accuracy and therapeutic outcomes. In this study, we computationally assembled a large virtual cohort (n = 1,321) of human prostate cancer transcriptome profiles from 38 distinct cohorts and, using pathway activation signatures of known relevance to prostate cancer, developed a novel classification system consisting of three distinct subtypes (named PCS1-3). We validated this subtyping scheme in 10 independent patient cohorts and 19 laboratory models of prostate cancer, including cell lines and genetically engineered mouse models. Analysis of subtype-specific gene expression patterns in independent datasets derived from luminal and basal cell models provides evidence that PCS1 and PCS2 tumors reflect luminal subtypes, while PCS3 represents a basal subtype. We show that PCS1 tumors progress more rapidly to metastatic disease in comparison with PCS2 or PCS3, including PSC1 tumors of low Gleason grade. To apply this finding clinically, we developed a 37-gene panel that accurately assigns individual tumors to one of the three PCS subtypes. This panel was also applied to circulating tumor cells (CTC) and provided evidence that PCS1 CTCs may reflect enzalutamide resistance. In summary, PCS subtyping may improve accuracy in predicting the likelihood of clinical progression and permit treatment stratification at early and late disease stages. Cancer Res; 76(17); 4948-58. ©2016 AACR.
Journal of Pharmacology and Experimental Therapeutics | 2010
Gary H. Perdew; Brett D. Hollingshead; Brett C. DiNatale; J. Luis Morales; Mark P. Labrecque; Mandeep Takhar; Kevin J. Tam; Timothy V. Beischlag
The putative cardioprotective and chemopreventive properties of the red wine phenolic resveratrol (RES) have made it the subject of a growing body of clinical and basic research. We have begun investigations focusing on the effects of RES on the activity of the aryl hydrocarbon receptor (AHR) complex. Our evidence suggests that RES is a potent repressor of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible gene transcription in estrogen receptor (ER)-positive human breast, lung, and colon cancer cell lines. RES activates the transcription of the ER target genes to the same degree as estradiol (E2) in human MCF-7 breast cancer cells. Unlike E2, which can only diminish TCDD-inducible CYP1A1 gene transcription by approximately 50%, RES can completely abrogate this response. Furthermore, 50% repression of TCDD-inducible transcription can be achieved with 100 nM RES, approximately 2.5 orders of magnitude lower than concentrations required for maximal inhibition, suggesting that multiple mechanisms are responsible for this effect. RES (100 nM) does not prevent ligand binding of a TCDD analog, nor does it prevent AHR from binding to its response element in the 5′-regulatory region of the CYP1A1 gene. Small inhibitory RNAs directed to ERα have demonstrated that RES-mediated repression of CYP1A1 depends on ERα. Whereas CYP1A1 protein levels in MCF-7 cells are refractory to the low-dose transcriptional effects of RES, a concomitant decrease in CYP1A1 protein levels is observed in Caco-2 cells. These results highlight a low-dose RES effect that could occur at nutritionally relevant exposures and are distinct from the high-dose effects often characterized.
European Urology | 2018
R. Jeffrey Karnes; Voleak Choeurng; Ashley E. Ross; Edward M. Schaeffer; Eric A. Klein; Stephen J. Freedland; Nicholas Erho; Kasra Yousefi; Mandeep Takhar; Elai Davicioni; Matthew R. Cooperberg; Bruce J. Trock
BACKGROUND Risk of prostate cancer-specific mortality (PCSM) is highly variable for men with adverse pathologic features at radical prostatectomy (RP); a majority will die of other causes. Accurately stratifying PCSM risk can improve therapy decisions. OBJECTIVE Validate the 22 gene Decipher genomic classifier (GC) to predict PCSM in men with adverse pathologic features after RP. DESIGN, SETTING, AND PARTICIPANTS Men with adverse pathologic features: pT3, pN1, positive margins, or Gleason score >7 who underwent RP in 1987-2010 at Johns Hopkins, Cleveland Clinic, Mayo Clinic, and Durham Veterans Affairs Hospital. We also analyzed subgroups at high risk (prostate-specific antigen >20 ng/ml, RP Gleason score 8-10, or stage >pT3b), or very high risk of PCSM (biochemical recurrence in<2 yr [BCR2], or men who developed metastasis after RP [MET]). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Logistic regression evaluated the association of GC with PCSM within 10 yr of RP (PCSM10), adjusted for the Cancer of the Prostate Risk Assessment Postsurgical Score (CAPRA-S). GC performance was evaluated with area under the receiver operating characteristic curve (AUC) and decision curves. RESULTS AND LIMITATIONS Five hundred and sixty-one men (112 with PCSM10), median follow-up 13.0 yr (patients without PCSM10). For high GC score (> 0.6) versus low-intermediate (≤ 0.6), the odds ratio for PCSM10 adjusted for CAPRA-S was 3.91 (95% confidence interval: 2.43-6.29), with AUC=0.77, an increase of 0.04 compared with CAPRA-S. Subgroup odds ratios were 3.96, 3.06, and 1.95 for high risk, BCR2, or MET, respectively (all p<0.05), with AUCs 0.64-0.72. GC stratified cumulative PCSM10 incidence from 2.8% to 30%. Combined use of case-control and cohort data is a potential limitation. CONCLUSIONS In a large cohort with the longest follow-up to date, Decipher GC demonstrated clinically important prediction of PCSM at 10 yr, independent of CAPRA-S, in men with adverse pathologic features, BCR2, or MET after RP. PATIENT SUMMARY Decipher genomic classifier may improve treatment decision-making for men with adverse or high risk pathology after radical prostatectomy.
Oncotarget | 2017
Mannan Nouri; Amy A. Lubik; Na Li; Brett G. Hollier; Mandeep Takhar; Manuel Altimirano-Dimas; Mengqian Chen; Mani Roshan-Moniri; Miriam S. Butler; Melanie Lehman; Jennifer L. Bishop; Sarah Truong; Shih Chieh Huang; Dawn R. Cochrane; Michael E. Cox; Colin Collins; Martin Gleave; Nicholas Erho; Mohamed Alshalafa; Elai Davicioni; Colleen C. Nelson; Sheryl Gregory-Evans; R. Jeffrey Karnes; Robert B. Jenkins; Eric A. Klein; Ralph Buttyan
Treatment-induced neuroendocrine transdifferentiation (NEtD) complicates therapies for metastatic prostate cancer (PCa). Based on evidence that PCa cells can transdifferentiate to other neuroectodermally-derived cell lineages in vitro, we proposed that NEtD requires first an intermediary reprogramming to metastable cancer stem-like cells (CSCs) of a neural class and we demonstrate that several different AR+/PSA+ PCa cell lines were efficiently reprogrammed to, maintained and propagated as CSCs by growth in androgen-free neural/neural crest (N/NC) stem medium. Such reprogrammed cells lost features of prostate differentiation; gained features of N/NC stem cells and tumor-initiating potential; were resistant to androgen signaling inhibition; and acquired an invasive phenotype in vitro and in vivo. When placed back into serum-containing mediums, reprogrammed cells could be re-differentiated to N-/NC-derived cell lineages or return back to an AR+ prostate-like state. Once returned, the AR+ cells were resistant to androgen signaling inhibition. Acute androgen deprivation or anti-androgen treatment in serum-containing medium led to the transient appearance of a sub-population of cells with similar characteristics. Finally, a 132 gene signature derived from reprogrammed PCa cell lines distinguished tumors from PCa patients with adverse outcomes. This model may explain neural manifestations of PCa associated with lethal disease. The metastable nature of the reprogrammed stem-like PCa cells suggests that cycles of PCa cell reprogramming followed by re-differentiation may support disease progression and therapeutic resistance. The ability of a gene signature from reprogrammed PCa cells to identify tumors from patients with metastasis or PCa-specific mortality implies that developmental reprogramming is linked to aggressive tumor behaviors.
European Urology | 2017
Fan Mo; Dong Lin; Mandeep Takhar; Varune Rohan Ramnarine; Xin Dong; Robert H. Bell; Stanislav Volik; Kendric Wang; Hui Xue; Yuwei Wang; Anne Haegert; Shawn Anderson; Sonal Brahmbhatt; Nicholas Erho; Xinya Wang; Peter W. Gout; James Morris; R. Jeffrey Karnes; Robert B. Den; Eric A. Klein; Edward M. Schaeffer; Ashley E. Ross; Shancheng Ren; S. Cenk Sahinalp; Yingrui Li; Xun Xu; Jun Wang; Jian Wang; Martin Gleave; Elai Davicioni
BACKGROUND Clinical grading systems using clinical features alongside nomograms lack precision in guiding treatment decisions in prostate cancer (PCa). There is a critical need for identification of biomarkers that can more accurately stratify patients with primary PCa. OBJECTIVE To identify a robust prognostic signature to better distinguish indolent from aggressive prostate cancer (PCa). DESIGN, SETTING, AND PARTICIPANTS To develop the signature, whole-genome and whole-transcriptome sequencing was conducted on five PCa patient-derived xenograft (PDX) models collected from independent foci of a single primary tumor and exhibiting variable metastatic phenotypes. Multiple independent clinical cohorts including an intermediate-risk cohort were used to validate the biomarkers. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS The outcome measurement defining aggressive PCa was metastasis following radical prostatectomy. A generalized linear model with lasso regularization was used to build a 93-gene stroma-derived metastasis signature (SDMS). The SDMS association with metastasis was assessed using a Wilcoxon rank-sum test. Performance was evaluated using the area under the curve (AUC) for the receiver operating characteristic, and Kaplan-Meier curves. Univariable and multivariable regression models were used to compare the SDMS alongside clinicopathological variables and reported signatures. AUC was assessed to determine if SDMS is additive or synergistic to previously reported signatures. RESULTS AND LIMITATIONS A close association between stromal gene expression and metastatic phenotype was observed. Accordingly, the SDMS was modeled and validated in multiple independent clinical cohorts. Patients with higher SDMS scores were found to have worse prognosis. Furthermore, SDMS was an independent prognostic factor, can stratify risk in intermediate-risk PCa, and can improve the performance of other previously reported signatures. CONCLUSIONS Profiling of stromal gene expression led to development of an SDMS that was validated as independently prognostic for the metastatic potential of prostate tumors. PATIENT SUMMARY Our stroma-derived metastasis signature can predict the metastatic potential of early stage disease and will strengthen decisions regarding selection of active surveillance versus surgery and/or radiation therapy for prostate cancer patients. Furthermore, profiling of stroma cells should be more consistent than profiling of diverse cellular populations of heterogeneous tumors.
Cancer Research | 2017
Y. Liang; Musaddeque Ahmed; Haiyang Guo; Fraser Soares; Junjie T. Hua; Shuai Gao; Catherine Lu; Christine Poon; Wanting Han; Jens Langstein; Muhammad B. Ekram; Brian Li; Elai Davicioni; Mandeep Takhar; Nicholas Erho; R. Jeffrey Karnes; Dianne Chadwick; Theodorus van der Kwast; Paul C. Boutros; C.H. Arrowsmith; Felix Y. Feng; Anthony M. Joshua; Amina Zoubeidi; Changmeng Cai; Housheng Hansen He
Androgen receptor (AR) signaling is a key driver of prostate cancer, and androgen-deprivation therapy (ADT) is a standard treatment for patients with advanced and metastatic disease. However, patients receiving ADT eventually develop incurable castration-resistant prostate cancer (CRPC). Here, we report that the chromatin modifier LSD1, an important regulator of AR transcriptional activity, undergoes epigenetic reprogramming in CRPC. LSD1 reprogramming in this setting activated a subset of cell-cycle genes, including CENPE, a centromere binding protein and mitotic kinesin. CENPE was regulated by the co-binding of LSD1 and AR to its promoter, which was associated with loss of RB1 in CRPC. Notably, genetic deletion or pharmacological inhibition of CENPE significantly decreases tumor growth. Our findings show how LSD1-mediated epigenetic reprogramming drives CRPC, and they offer a mechanistic rationale for its therapeutic targeting in this disease. Cancer Res; 77(20); 5479-90. ©2017 AACR.
Oncotarget | 2016
Mark P. Labrecque; Mandeep Takhar; Rebecca Nason; Stephanie Santacruz; Kevin J. Tam; Shabnam Massah; Anne Haegert; Robert H. Bell; Manuel Altamirano-Dimas; Colin Collins; Frank J.S. Lee; Gratien G. Prefontaine; Michael E. Cox; Timothy V. Beischlag
Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies.
PLOS ONE | 2014
Mark P. Labrecque; Mandeep Takhar; Julienne M. Jagdeo; Kevin J. Tam; Christina Chiu; Te-Yu Wang; Gratien G. Prefontaine; Michael E. Cox; Timothy V. Beischlag
Localized hypoxia in solid tumors activates transcriptional programs that promote the metastatic transformation of cells. Like hypoxia-inducible hyper-vascularization, loss of the retinoblastoma protein (Rb) is a trait common to advanced stages of tumor progression in many metastatic cancers. However, no link between the role of Rb and hypoxia-driven metastatic processes has been established. We demonstrated that Rb is a key mediator of the hypoxic response mediated by HIF1α/β, the master regulator of the hypoxia response, and its essential co-activator, the thyroid hormone receptor/retinoblastoma-interacting protein (TRIP230). Furthermore, loss of Rb unmasks the full co-activation potential of TRIP230. Using small inhibitory RNA approaches in vivo, we established that Rb attenuates the normal physiological response to hypoxia by HIF1α. Notably, loss of Rb results in hypoxia-dependent biochemical changes that promote acquisition of an invasive phenotype in MCF7 breast cancer cells. In addition, Rb is present in HIF1α-ARNT/HIF1β transcriptional complexes associated with TRIP230 as determined by co-immuno-precipitation, GST-pull-down and ChIP assays. These results demonstrate that Rb is a negative modulator of hypoxia-regulated transcription by virtue of its direct effects on the HIF1 complex. This work represents the first link between the functional ablation of Rb in tumor cells and HIF1α-dependent transcriptional activation and invasion.