Maneesh Mailankot
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maneesh Mailankot.
Redox Report | 2010
David J. Bonda; Maneesh Mailankot; Jeremy G. Stone; Matthew R. Garrett; Magdalena Staniszewska; Rudy J. Castellani; Xiongwei Zhu; Hyoung Gon Lee; George Perry; Ram H. Nagaraj; Mark A. Smith
Abstract Tryptophan metabolism, through the kynurenine pathway, produces neurotoxic intermediates that are implicated in the pathogenesis of Alzheimers disease. In particular, oxidative stress via 3-hydroxykynurenine (3-HK) and its cleaved product 3-hydroxyanthranilic acid (3-HAA) significantly damages neuronal tissue and may potentially contribute to a cycle of neurodegeneration through consequent amyloid-β accumulation, glial activation, and up-regulation of the kynurenine pathway. To determine the role of the kynurenine pathway in eliciting and continuing oxidative stress within Alzheimers diseased brains, we used immunocytochemical methods to show elevated levels of 3-HK modifications and the upstream, rate-limiting enzyme indoleamine 2,3-dioxygenase (IDO-1) in Alzheimers diseased brains when compared to controls. Importantly, the association of IDO-1 with senile plaques was confirmed and, for the first time, IDO-1 was shown to be specifically localized in conjunction with neurofibrillary tangles. As senile plaques and neurofibrillary tangles are the pathological hallmarks of Alzheimers disease, our study provides further evidence that the kynurenine pathway is involved with the destructive neurodegenerative pathway of Alzheimers disease.
The International Journal of Biochemistry & Cell Biology | 2010
Maneesh Mailankot; Ram H. Nagaraj
Interferon-gamma (IFN-gamma) is known to cause apoptosis of lens epithelial cells and cataract formation, but the molecular mechanisms underlying these effects are unknown. IFN-gamma induces the expression of indoleamine 2,3-dioxygenase (IDO) and thereby enhances the production of kynurenines from l-tryptophan. The present study was designed to investigate the role of IDO and kynurenines in the IFN-gamma-mediated apoptosis of lens epithelial cells and to determine the signaling pathways involved. IFN-gamma stimulated the synthesis of IDO and activated the JAK-STAT1 signaling pathway in human lens epithelial cells (HLE-B3) in a dose-dependent manner. Meanwhile, fludarabine, an inhibitor of STAT1 activation, blocked IFN-gamma-mediated IDO expression. N-Formylkynurenine, kynurenine (Kyn) and 3-hydroxykynurenine (3OHKyn) were detected in cells, with 3OHKyn concentrations being higher than those of the other kynurenines. The intracellular production of kynurenines was completely blocked by 1-methyl-DL-tryptophan (MT), an inhibitor of IDO. Kyn- and 3OHKyn-modified proteins were detected in IFN-gamma-treated cells. The induction of IDO by IFN-gamma in HLE-B3 cells caused increases in intracellular ROS, cytosolic cytochrome c and caspase-3 activity, along with a decrease in protein-free thiol content. These changes were accompanied by apoptosis. At equimolar concentrations, 3OHKyn caused higher levels of apoptosis than the other kynurenines in HLE-B3 cells. MT and a kynurenine 3-hydroxylase inhibitor (Ro61-8048) effectively inhibited IFN-gamma-mediated apoptosis in HLE-B3 cells. Our results show that the induction of IDO by IFN-gamma is JAK-STAT1 pathway-dependent and that this induction causes 3OHKyn-mediated apoptosis in HLE-B3 cells. These data suggest that IDO-mediated kynurenine formation could play a role in cataract formation related to chronic inflammation.
Laboratory Investigation | 2009
Maneesh Mailankot; Magdalena Staniszewska; Heather Butler; Moonkyung H Caprara; Scott J. Howell; Benlian Wang; Catherine Doller; Lixing W. Reneker; Ram H. Nagaraj
Indoleamine 2,3-dioxygenase (IDO) is the first enzyme in the kynurenine pathway. The kynurenines formed in this pathway chemically modify proteins and cause apoptosis in cells. Evidence suggests that kynurenines and their protein modifications are involved in cataract formation, but this has yet to be directly demonstrated. We generated transgenic (Tg) mouse lines that overexpress human IDO in the lens. Homozygous Tg (homTg) lenses had higher IDO immunoreactivity, ∼4.5 times greater IDO mRNA, and ∼8 times higher IDO activity compared to lenses from hemizygous Tg (hemTg) animals. The kynurenine content was threefold higher in homTg than in hemTg but was not detected in wild-type (Wt) lenses. Kynurenine modifications were ∼2.6 times greater in homTg than in hemTg or Wt. HomTg lenses had vacuoles in the epithelium and cortical fiber cells. Kynurenine modifications coincided with apoptosis in the secondary fiber cells of homTg lenses. Caspase-3 and caspase-9 activities were markedly higher in homTg than in hemTg and Wt. The glutathione content was ∼36% lower in homTg compared to hemTg and Wt lenses. HomTg animals also developed bilateral cataracts within 3 months of birth. Together these data demonstrate that IDO-mediated production of kynurenines results in defects in fiber cell differentiation and their apoptosis and suggest that IDO activity is kept low in the lens to prevent deleterious effects by kynurenines.
Biogerontology | 2009
Maneesh Mailankot; Smitha Padmanabha; NagaRekha Pasupuleti; Denice L. Major; Scott J. Howell; Ram H. Nagaraj
Glyoxalase I (GLOI) is the first enzyme of the glyoxalase system that catalyzes the metabolism of reactive dicarbonyls, such as methylglyoxal (MGO). During aging and cataract development, human lens proteins are chemically modified by MGO, which is likely due to inadequate metabolism of MGO by the glyoxalase system. In this study, we have determined the effect of aging on GLOI activity and the immunoreactivity and morphological distribution of GLOI in the human lens. A monoclonal antibody was developed against human GLOI. GLOI immunoreactivity was strongest in the anterior epithelial cells and weaker in rest of the lens. Cultured human lens epithelial cells showed immunostaining throughout the cytoplasm. In the human lens, GLOI activity and immunoreactivity both decreased with age. We believe that this would lead to promotion of MGO-modification in aging lens proteins.
Biochimica et Biophysica Acta | 2010
Ram H. Nagaraj; Smitha Padmanabha; Maneesh Mailankot; Magdalena Staniszewska; Liew Jun Mun; Marcus A. Glomb; Mikhail Linetsky
Human lens proteins (HLP) become chemically modified by kynurenines and advanced glycation end products (AGEs) during aging and cataractogenesis. We investigated the effects of kynurenines on AGE synthesis in HLP. We found that incubation with 5 mM ribose or 5 mM ascorbate produced significant quantities of pentosidine, and this was further enhanced in the presence of two different kynurenines (200-500 microM): N-formylkynurenine (Nfk) and kynurenine (Kyn). Another related compound, 3-hydroxykynurenine (3OH-Kyn), had disparate effects; low concentrations (10-200 microM) promoted pentosidine synthesis, but high concentrations (200-500 microM) inhibited it. 3OH-Kyn showed similar effects on pentosidine synthesis from Amadori-enriched HLP or ribated lysine. Chelex-100 treatment of phosphate buffer reduced pentosidine synthesis from Amadori-enriched HLP by approximately 90%, but it did not inhibit the stimulating effect of 3OH-Kyn and EDTA. 3OH-Kyn (100-500 microM) spontaneously produced copious amounts of H(2)O(2) (10-25 microM), but externally added H(2)O(2) had only a mild stimulating effect on pentosidine but had no effect on N(epsilon)-carboxymethyl lysine (CML) synthesis in HLP from ribose and ascorbate. Further, human lens epithelial cells incubated with ribose and 3OH-Kyn showed higher intracellular pentosidine than cells incubated with ribose alone. CML synthesis from glycating agents was inhibited 30 to 50% by 3OH-Kyn at concentrations of 100-500 microM. Argpyrimidine synthesis from 5mM methylglyoxal was slightly inhibited by all kynurenines at concentrations of 100-500 microM. These results suggest that AGE synthesis in HLP is modulated by kynurenines, and such effects indicate a mode of interplay between kynurenines and carbohydrates important for AGE formation during lens aging and cataract formation.
Biochimica et Biophysica Acta | 2010
Maneesh Mailankot; Scott J. Howell; Ram H. Nagaraj
Fibroblast growth factor-2 (FGF2)-mediated signaling plays an important role in fiber cell differentiation in eye lens. We had previously shown that kynurenine (KYN) produced from the overexpression of indoleamine 2,3-dioxygenase (IDO) causes defects in the differentiation of fiber cells, induces fiber cell apoptosis and cataract formation in the mouse lens, and leads to cell cycle arrest in cultured mouse lens epithelial cells (mLEC). In this study, we demonstrate that exogenous KYN reduces FGF2-mediated expression of alpha-, beta-, and gamma-crystallin and MIP26 in mLEC. We show that endogenously produced KYN in mLEC of IDO transgenic animals causes similar defects in FGF2-induced protein expression and that a competitive inhibitor of IDO prevents such defects. Our data also show that KYN inhibits FGF2-induced Akt and ERK1/2 phosphorylation in mLEC, which are required for crystallin and MIP26 expression in the lens. KYN does not inhibit FGF2 binding to cells but inhibit phosphorylation of FGFR1in mLEC. Together our data suggest that KYN might inhibit FGF2-mediated fiber cell differentiation by preventing expression of crystallins and MIP26. Our studies provide a novel mechanism by which KYN can exert deleterious effects in cells.
Investigative Ophthalmology & Visual Science | 2014
Rooban B. Nahomi; Maneesh Mailankot; Timothy S. Kern; Jie Tang; Allen Lee; Sruthi Sampathkumar; Ram H. Nagaraj
Investigative Ophthalmology & Visual Science | 2011
Maneesh Mailankot; Dawn Smith; Catherine Doller; Scott J. Howell; Ram H. Nagaraj
Investigative Ophthalmology & Visual Science | 2010
Ram H. Nagaraj; Maneesh Mailankot
Investigative Ophthalmology & Visual Science | 2010
Maneesh Mailankot; Scott J. Howell; Ram H. Nagaraj