Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maneesh Sahani is active.

Publication


Featured researches published by Maneesh Sahani.


Nature Neuroscience | 2002

Temporal structure in neuronal activity during working memory in macaque parietal cortex.

Bijan Pesaran; John S. Pezaris; Maneesh Sahani; Partha P. Mitra; Richard A. Andersen

Many cortical structures have elevated firing rates during working memory, but it is not known how the activity is maintained. To investigate whether reverberating activity is important, we studied the temporal structure of local field potential (LFP) activity and spiking from area LIP in two awake macaques during a memory-saccade task. Using spectral analysis, we found spatially tuned elevated power in the gamma band (25–90 Hz) in LFP and spiking activity during the memory period. Spiking and LFP activity were also coherent in the gamma band but not at lower frequencies. Finally, we decoded LFP activity on a single-trial basis and found that LFP activity in parietal cortex discriminated between preferred and anti-preferred direction with approximately the same accuracy as the spike rate and predicted the time of a planned movement with better accuracy than the spike rate. This finding could accelerate the development of a cortical neural prosthesis.


Nature Neuroscience | 2010

Stimulus onset quenches neural variability: a widespread cortical phenomenon

Mark M. Churchland; Byron M. Yu; John P. Cunningham; Leo P. Sugrue; Marlene R. Cohen; Greg Corrado; William T. Newsome; Andy Clark; Paymon Hosseini; Benjamin B. Scott; David C. Bradley; Matthew A. Smith; Adam Kohn; J. Anthony Movshon; Katherine M. Armstrong; Tirin Moore; Steve W. C. Chang; Lawrence H. Snyder; Stephen G. Lisberger; Nicholas J. Priebe; Ian M. Finn; David Ferster; Stephen I. Ryu; Gopal Santhanam; Maneesh Sahani; Krishna V. Shenoy

Neural responses are typically characterized by computing the mean firing rate, but response variability can exist across trials. Many studies have examined the effect of a stimulus on the mean response, but few have examined the effect on response variability. We measured neural variability in 13 extracellularly recorded datasets and one intracellularly recorded dataset from seven areas spanning the four cortical lobes in monkeys and cats. In every case, stimulus onset caused a decline in neural variability. This occurred even when the stimulus produced little change in mean firing rate. The variability decline was observed in membrane potential recordings, in the spiking of individual neurons and in correlated spiking variability measured with implanted 96-electrode arrays. The variability decline was observed for all stimuli tested, regardless of whether the animal was awake, behaving or anaesthetized. This widespread variability decline suggests a rather general property of cortex, that its state is stabilized by an input.


NeuroImage | 2005

Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction

Kensuke Sekihara; Maneesh Sahani; Srikantan S. Nagarajan

This paper discusses the location bias and the spatial resolution in the reconstruction of a single dipole source by various spatial filtering techniques used for neuromagnetic imaging. We first analyze the location bias for several representative adaptive and non-adaptive spatial filters using their resolution kernels. This analysis theoretically validates previously reported empirical findings that standardized low-resolution electromagnetic tomography (sLORETA) has no location bias. We also find that the minimum-variance spatial filter does exhibit bias in the reconstructed location of a single source, but that this bias is eliminated by using the normalized lead field. We then focus on the comparison of sLORETA and the lead-field normalized minimum-variance spatial filter, and analyze the effect of noise on source location bias. We find that the signal-to-noise ratio (SNR) in the measurements determines whether the sLORETA reconstruction has source location bias, while the lead-field normalized minimum-variance spatial filter has no location bias even in the presence of noise. Finally, we compare the spatial resolution for sLORETA and the minimum-variance filter, and show that the minimum-variance filter attains much higher resolution than sLORETA does. The results of these analyses are validated by numerical experiments as well as by reconstructions based on two sets of evoked magnetic responses.


Annual Review of Neuroscience | 2013

Cortical Control of Arm Movements: A Dynamical Systems Perspective

Krishna V. Shenoy; Maneesh Sahani; Mark M. Churchland

Our ability to move is central to everyday life. Investigating the neural control of movement in general, and the cortical control of volitional arm movements in particular, has been a major research focus in recent decades. Studies have involved primarily either attempts to account for single-neuron responses in terms of tuning for movement parameters or attempts to decode movement parameters from populations of tuned neurons. Even though this focus on encoding and decoding has led to many seminal advances, it has not produced an agreed-upon conceptual framework. Interest in understanding the underlying neural dynamics has recently increased, leading to questions such as how does the current population response determine the future population response, and to what purpose? We review how a dynamical systems perspective may help us understand why neural activity evolves the way it does, how neural activity relates to movement parameters, and how a unified conceptual framework may result.


neural information processing systems | 2008

Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity

Byron M. Yu; John P. Cunningham; Gopal Santhanam; Stephen I. Ryu; Krishna V. Shenoy; Maneesh Sahani

We consider the problem of extracting smooth, low-dimensional neural trajectories that summarize the activity recorded simultaneously from many neurons on individual experimental trials. Beyond the benefit of visualizing the high-dimensional, noisy spiking activity in a compact form, such trajectories can offer insight into the dynamics of the neural circuitry underlying the recorded activity. Current methods for extracting neural trajectories involve a two-stage process: the spike trains are first smoothed over time, then a static dimensionality-reduction technique is applied. We first describe extensions of the two-stage methods that allow the degree of smoothing to be chosen in a principled way and that account for spiking variability, which may vary both across neurons and across time. We then present a novel method for extracting neural trajectories-Gaussian-process factor analysis (GPFA)-which unifies the smoothing and dimensionality-reduction operations in a common probabilistic framework. We applied these methods to the activity of 61 neurons recorded simultaneously in macaque premotor and motor cortices during reach planning and execution. By adopting a goodness-of-fit metric that measures how well the activity of each neuron can be predicted by all other recorded neurons, we found that the proposed extensions improved the predictive ability of the two-stage methods. The predictive ability was further improved by going to GPFA. From the extracted trajectories, we directly observed a convergence in neural state during motor planning, an effect that was shown indirectly by previous studies. We then show how such methods can be a powerful tool for relating the spiking activity across a neural population to the subjects behavior on a single-trial basis. Finally, to assess how well the proposed methods characterize neural population activity when the underlying time course is known, we performed simulations that revealed that GPFA performed tens of percent better than the best two-stage method.


Current Opinion in Neurobiology | 2007

Techniques for extracting single-trial activity patterns from large-scale neural recordings

Mark M. Churchland; Byron M. Yu; Maneesh Sahani; Krishna V. Shenoy

Large, chronically implanted arrays of microelectrodes are an increasingly common tool for recording from primate cortex and can provide extracellular recordings from many (order of 100) neurons. While the desire for cortically based motor prostheses has helped drive their development, such arrays also offer great potential to advance basic neuroscience research. Here we discuss the utility of array recording for the study of neural dynamics. Neural activity often has dynamics beyond that driven directly by the stimulus. While governed by those dynamics, neural responses may nevertheless unfold differently for nominally identical trials, rendering many traditional analysis methods ineffective. We review recent studies - some employing simultaneous recording, some not - indicating that such variability is indeed present both during movement generation and during the preceding premotor computations. In such cases, large-scale simultaneous recordings have the potential to provide an unprecedented view of neural dynamics at the level of single trials. However, this enterprise will depend not only on techniques for simultaneous recording but also on the use and further development of analysis techniques that can appropriately reduce the dimensionality of the data, and allow visualization of single-trial neural behavior.


The Journal of Neuroscience | 2008

Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods

Misha B. Ahrens; Jennifer F. Linden; Maneesh Sahani

The relationship between a sound and its neural representation in the auditory cortex remains elusive. Simple measures such as the frequency response area or frequency tuning curve provide little insight into the function of the auditory cortex in complex sound environments. Spectrotemporal receptive field (STRF) models, despite their descriptive potential, perform poorly when used to predict auditory cortical responses, showing that nonlinear features of cortical response functions, which are not captured by STRFs, are functionally important. We introduce a new approach to the description of auditory cortical responses, using multilinear modeling methods. These descriptions simultaneously account for several nonlinearities in the stimulus–response functions of auditory cortical neurons, including adaptation, spectral interactions, and nonlinear sensitivity to sound level. The models reveal multiple inseparabilities in cortical processing of time lag, frequency, and sound level, and suggest functional mechanisms by which auditory cortical neurons are sensitive to stimulus context. By explicitly modeling these contextual influences, the models are able to predict auditory cortical responses more accurately than are STRF models. In addition, they can explain some forms of stimulus dependence in STRFs that were previously poorly understood.


The Journal of Neuroscience | 2008

The Consequences of Response Nonlinearities for Interpretation of Spectrotemporal Receptive Fields

Christianson Gb; Maneesh Sahani; Jennifer F. Linden

Neurons in the central auditory system are often described by the spectrotemporal receptive field (STRF), conventionally defined as the best linear fit between the spectrogram of a sound and the spike rate it evokes. An STRF is often assumed to provide an estimate of the receptive field of a neuron, i.e., the spectral and temporal range of stimuli that affect the response. However, when the true stimulus–response function is nonlinear, the STRF will be stimulus dependent, and changes in the stimulus properties can alter estimates of the sign and spectrotemporal extent of receptive field components. We demonstrate analytically and in simulations that, even when uncorrelated stimuli are used, interactions between simple neuronal nonlinearities and higher-order structure in the stimulus can produce STRFs that show contributions from time–frequency combinations to which the neuron is actually insensitive. Only when spectrotemporally independent stimuli are used does the STRF reliably indicate features of the underlying receptive field, and even then it provides only a conservative estimate. One consequence of these observations, illustrated using natural stimuli, is that a stimulus-induced change in an STRF could arise from a consistent but nonlinear neuronal response to stimulus ensembles with differing higher-order dependencies. Thus, although the responses of higher auditory neurons may well involve adaptation to the statistics of different stimulus ensembles, stimulus dependence of STRFs alone, or indeed of any overly constrained stimulus–response mapping, cannot demonstrate the nature or magnitude of such effects.


Neuron | 2015

Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex

Jasper Poort; Adil G. Khan; Marius Pachitariu; Abdellatif Nemri; Ivana Orsolic; Julija Krupic; Marius Bauza; Maneesh Sahani; Georg B. Keller; Thomas D. Mrsic-Flogel; Sonja B. Hofer

Summary We determined how learning modifies neural representations in primary visual cortex (V1) during acquisition of a visually guided behavioral task. We imaged the activity of the same layer 2/3 neuronal populations as mice learned to discriminate two visual patterns while running through a virtual corridor, where one pattern was rewarded. Improvements in behavioral performance were closely associated with increasingly distinguishable population-level representations of task-relevant stimuli, as a result of stabilization of existing and recruitment of new neurons selective for these stimuli. These effects correlated with the appearance of multiple task-dependent signals during learning: those that increased neuronal selectivity across the population when expert animals engaged in the task, and those reflecting anticipation or behavioral choices specifically in neuronal subsets preferring the rewarded stimulus. Therefore, learning engages diverse mechanisms that modify sensory and non-sensory representations in V1 to adjust its processing to task requirements and the behavioral relevance of visual stimuli.


Neural Computation | 2003

Doubly distributional population codes: simultaneous representation of uncertainty and multiplicity

Maneesh Sahani; Peter Dayan

Perceptual inference fundamentally involves uncertainty, arising from noise in sensation and the ill-posed nature of many perceptual problems. Accurate perception requires that this uncertainty be correctly represented, manipulated, and learned about. The choicessubjects makein various psychophysical experiments suggest that they do indeed take such uncertainty into account when making perceptual inferences, posing the question as to how uncertainty is represented in the activities of neuronal populations. Most theoretical investigations of population coding have ignored this issue altogether; the few existing proposals that address it do so in such a way that it is fatally conflated with another facet of perceptual problems that also needs correct handling: multiplicity (that is, the simultaneous presence of multiple distinct stimuli). We present and validate a more powerful proposal for the way that population activity may encode uncertainty, both distinctly from and simultaneously with multiplicity.

Collaboration


Dive into the Maneesh Sahani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Byron M. Yu

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen I. Ryu

Palo Alto Medical Foundation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge